Abstract:
Embodiments of the present invention relate to two improved catalysts and associated processes that directly convert carbon dioxide and hydrogen to liquid fuels. A catalytic system comprises two catalysts in series that are operated in tandem to directly produce synthetic liquid fuels. The carbon conversion efficiency for CO2 to liquid fuels is greater than 45%. The fuel is distilled into a premium diesel fuels (approximately 70 volume %) and naphtha (approximately 30 volume %) which are used directly as “drop-in” fuels without requiring any further processing. Any light hydrocarbons that are present with the carbon dioxide are also converted directly to fuels. This process is directly applicable to the conversion of CO2 collected from ethanol plants, cement plants, power plants, biogas, carbon dioxide/hydrocarbon mixtures from secondary oil recovery, and other carbon dioxide/hydrocarbon streams. The catalyst system is durable, efficient and maintains a relatively constant level of fuel productivity over long periods of time without requiring re-activation or replacement.
Abstract:
A method of producing a separation membrane includes a seed crystal adhesion step of adhering zeolite seed crystals to a porous support formed of stainless steel to obtain a seed crystal-bearing support and a separation layer formation step of forming a porous separation layer formed of a zeolite on the seed crystal-bearing support. The stainless steel has a contact angle with water of 90° or more. The seed crystal adhesion step includes bringing the zeolite seed crystals and a solvent having a contact angle with the stainless steel of 30° or less into contact with the porous support.
Abstract:
Catalysts and methods for use in conversion of glycerides and free fatty acids to biodiesel are described. A batch or continuous process may be used with the catalysts for transesterification of triglycerides with an alkyl alcohol to produce corresponding mono carboxylic acid esters and glycerol in high yields and purity. Similarly, alkyl and aryl carboxylic acids and free fatty acids are also converted to corresponding alkyl esters. Catalysts are capable of simultaneous esterification and transesterification under same process conditions. The described catalysts are thermostable, long lasting, and highly active.
Abstract:
The present invention relates to a dehydrogenation catalyst in which a platinum-group metal, an assistant metal, and an alkali metal or alkaline earth metal component are supported on a carrier, wherein the molar ratio of platinum to the assistant metal is 0.5 to 1.49, and the catalyst has an acidity amount of 20 to 150 μmol KOH/g catalyst when it is titrated with KOH. The dehydrogenation catalyst according to the present invention may prevent coke formation from increasing rapidly when the hydrogen/hydrocarbon ratio in a dehydrogenation reaction is reduced, thereby increasing the productivity of the process. Accordingly, it makes it possible to operate the process under a condition in which the hydrogen/hydrocarbon ratio in a dehydrogenation reaction is reduced, thereby improving the economy of the process.
Abstract:
The present invention relates to a catalyst having improved selectivity and reactivity and applied to preparing olefins by dehydrogenating C9 to C13 paraffin, and particularly to a technique for preparing a catalyst, which uses a heat-treated support having controlled pores, and most of metal components contained therein are distributed evenly in a support in the form of an alloy rather than in the form of each separate metal, thereby exhibiting high a conversion rate and selectivity when used in dehydrogenation.
Abstract:
The present invention relates to a process for the regeneration of a catalyst comprising a titanium-containing zeolite, said catalyst having been used in a process for the preparation of an olefin oxide and having phosphate deposited thereon, said process for the regeneration comprising the steps: (a) separating the reaction mixture from the catalyst, (b) washing the catalyst obtained from (a) with liquid aqueous system; (c) optionally drying the catalyst obtained from (b) in a gas stream comprising an inert gas at a temperature of less than 300° C.; (d) calcining the catalyst obtained from (c) in a gas stream comprising oxygen at a temperature of at least 300° C.
Abstract:
A satisfactory oxygen storage material and a method for producing it are provided. The oxygen storage material comprises zirconia particles with a ceria-zirconia complex oxide supported on the zirconia particles. The ceria-zirconia complex oxide includes a pyrochlore phase and has a mean crystallite diameter of 10 nm to 22.9 nm.
Abstract:
A continuous process for the preparation of propylene oxide, comprising (i) providing a liquid feed stream comprising propene, hydrogen peroxide, acetonitrile, water, dissolved potassium dihydrogen phosphate, and optionally propane; (ii) passing the liquid feed stream provided in (i) into an epoxidation reactor comprising a catalyst comprising a titanium zeolite of structure type MWW, and subjecting the liquid feed stream to epoxidation reaction conditions; (iii) removing an effluent stream from the epoxidation reactor; wherein the concentration of the dissolved potassium dihydrogen phosphate in the liquid feed stream is at least 10% of the solubility limit of the potassium dihydrogen phosphate in the liquid feed stream.
Abstract:
The present invention is directed to an improved finished hydroisomerization catalyst manufactured from a first high nanopore volume (HNPV) alumina and a pore size distribution characterized by a full width at half-maximum, normalized to pore volume, of 15 to 25 nm·g/cc, and a second HNPV alumina having a pore size distribution characterized by a full width at half-maximum, normalized to pore volume, of 5 to 15 nm·g/cc. Their combination yields a HNPV base extrudate having a low particle density as compared to a conventional base extrudates.
Abstract:
Provided is a method for decomposing at least one of organic compound contained in an aqueous solution by using a titanium dioxide photocatalyst that is excellent in both photocatalytic activity and solid-liquid separation performance for water treatment. The method includes: a step of adding catalyst particles into the aqueous solution; a step of decomposing the organic compound by irradiating the aqueous solution with light having a wavelength of 200 nanometers or more and 400 nanometers or less while stirring the catalyst particles in the aqueous solution; and a step of stopping the stirring, and separating the catalyst particles from the aqueous solution by sedimentation. The catalyst particles are composed only of titanium dioxide particles and zeolite particles, the titanium dioxide particles are adsorbed on outer surfaces of the zeolite particles, the zeolite particles have a silica/alumina molar ratio of 10 or more, and the catalyst particles are contained in the aqueous solution at a concentration of 0.4 grams/liter or more and 16 grams/liter or less.