Abstract:
Devices, methods, and systems of various embodiments are disclosed including an unmanned aerial vehicle (UAV) having a hybrid rotor drive system. The UAV may include a frame, a primary rotor, a plurality of auxiliary rotors, a battery, and a processor coupled to the battery and the auxiliary rotors. The primary rotor may be configured to generate thrust with a downwash of air. The plurality of auxiliary rotors may each be at least partially disposed in the downwash of air generated by the primary rotor. The plurality of auxiliary rotors may be configured to be able to harvest energy from the downwash of air. The battery may be configured to store at least some of the energy harvested from the downwash of air by the plurality of auxiliary rotors. The processor may be configured with processor-executable instructions to utilize the plurality of auxiliary rotors to provide flight control for the UAV.
Abstract:
Unmanned aerial vehicles and methods for providing the same are disclosed. The unmanned aerial vehicles may have various configurations related to a support frame. The unmanned aerial vehicles may have various configurations with a continuous track for ground propulsion. The unmanned aerial vehicles may have various configurations related to payload clamps.
Abstract:
Systems, methods, and devices for propelling self-propelled movable objects are provided. In one aspect, a rotor assembly for a self-propelled movable object comprises: a hub comprising a first fastening feature; a drive shaft comprising a second fastening feature and directly coupled to the hub by a mating connection of the first and second fastening features, wherein the drive shaft is configured to cause rotation of the hub such that the mating connection of the first and second fastening features is tightened by the rotation; and a plurality of rotor blades coupled to the hub and configured to rotate therewith to generate a propulsive force.
Abstract:
Disclosed are an unmanned aerial vehicle, a charging station, and an automatic charging system for an unmanned aerial vehicle including the same. The unmanned aerial vehicle includes: a main body which includes a plurality of rotors, and is capable of flying and vertical taking off and landing by the rotors; a battery which is mounted in the main body for supplying power and is chargeable; a landing gear which includes a first charging terminal and a second charging terminal having different polarities and electrically connected to the battery, and is provided at a lower part of the main body; and a controller configured to control the main body.
Abstract:
An enhanced distance detection system for an autonomous or semi-autonomous vehicle is described here. The distance detection system includes a distance detector, which may have a limited scope of distance detection, and a directional controller, which allows extending the dimension or scope of the distance detector as the vehicle travels and performs missions. The directional controller can change the detection direction of the distance detector with a motorized gimbal or functionally similar system, and the change in the detection direction can be integrated with the status of and other instructions executed by the vehicle.
Abstract:
Methods and apparatus for vertical or short takeoff and landing, and operational control during flight. In one embodiment, the apparatus comprises two or more counter driven rings with one or more airfoils attached. In one variant, there is an upper ring and a lower ring, each with multiple airfoils attached. In one variant, lift is generated largely via ambient air currents, allowing for long term on-station operation of the device. In another variant, a fuselage (or parts thereof) of the apparatus can be independently controlled, including for example as to attitude relative to other components of the craft.
Abstract:
Infrastructure is remotely inspected using a sensor pod such as an unmanned ground vehicle and sensors adapted to inspect a surface of the infrastructure and an unmanned aircraft adapted to interoperate with the sensor pod. The sensor pod drives along the surface of the infrastructure being inspected. A tether to the unmanned aircraft deploys and retrieves the sensor pod on the surface of the infrastructure. Electronic sensors of the sensor pod are deployable in a crevice of the surface of the infrastructure obstructed from view by the unmanned aircraft. The unmanned aircraft can comprise a radio repeater adapted to relay ground commands to the sensor pod.
Abstract:
An interior length of a confined space is inspected by autonomously flying an unmanned aerial vehicle having a sensor pod. The sensor pod can be tethered to the unmanned aerial vehicle and lowered into the confined space from above perhaps by an electromechanical hoist. An altitude or heading of the sensor pod can be measured. The confined space can be the flue of a chimney.
Abstract:
A method of home inspection comprising guiding a drone through a home along a selected inspection path, transmitting signals from the drone to establishing a flight path through the home, storing the flight path on a server, accessing the flight path from a programmed interactive digital device, launching the drone using said programmed interactive digital device, directing the drone through the home along the flight path and transmitting video signals from the drone and employing the video signals to provide a visual view of the property on a display of the interactive digital device. In another embodiment, the buyer can guide the drone along a flight path determined by the buyer in real time.
Abstract:
A surveying system having a total station integrated into an unmanned aerial vehicle communicates with a plurality of mobile communication stations that are located on known site coordinates. By locating the mobile communication stations on known coordinates, the location of the aerial vehicle is precisely triangulated and controlled. Construction drawings are loaded into the system, thereby allowing the vehicle to locate itself at specific points designated in the drawings for the marking of on-site construction grid lines.