Abstract:
Systems and methods can determine a liquid flow in a spraying system. An amount of liquid that is output from the spraying system during a pump cycle is determined. A number of pump cycles that occur within a given amount of time are measured. The number of pump cycles are measured using an electronic speed controller (ESC). Additionally, the ESC indicates the number of pump cycles within a given amount of time within a threshold of precision. The amount of liquid flow in the spraying system is calculated based on the measured number of pump cycles and the determined amount of liquid that is output from the spraying system.
Abstract:
A hydraulically propelled drone is provided for delivering firefighting fluid to an elevated location. The drone comprises a housing having a primary inlet configured to receive the distal end of a fire hose, a primary outlet configured to receive the inlet end of a primary nozzle, a central passageway configured to conduct fluid from the primary inlet to the primary outlet, and at least one secondary outlet communicating with the central passageway. At least one lift nozzle communicates with the secondary outlet and is configured to direct fluid in a generally downward direction so as to produce an upward thrust on the drone housing, and at least one valve is contained within the housing and configured to control the flow of said fluid through the primary nozzle and the at least one lift nozzle nozzle.
Abstract:
An apparatus comprises a base vehicle, a takeoff and landing system, a rack system, a refueling system associated with the base vehicle, and a controller. The rack system comprises a group of racks with slots in which the slots receive unmanned aerial vehicles, provide refueling connections that facilitate refueling of the unmanned aerial vehicles located in the slots, and provide data connections that facilitate data transmission with the unmanned aerial vehicles located in the slots. The refueling system refuels an unmanned aerial vehicle located in a slot using a refueling connection in the refueling connections. The controller communicates with the unmanned aerial vehicle using a data connection and control the refueling of the unmanned aerial vehicles by the refueling system while the unmanned aerial vehicle is in the slot, enabling exchanging data with the unmanned aerial vehicle and the refueling of the unmanned aerial vehicle simultaneously.
Abstract:
An unmanned aerial vehicle (UAV) having at least one sensor for detecting the presence of a survivor in a search and rescue area. The at least one sensor is preferably an ultra-wide band (UWB) transceiver sensor. The UAV includes a UAV data link transceiver for wirelessly communicating information concerning the survivor to a command center.
Abstract:
A method involves operating an aerial vehicle in a hover-flight orientation. The aerial vehicle is connected to a tether that defines a tether sphere having a radius based on a length of the tether, and the tether is connected to a ground station. The method involves positioning the aerial vehicle at a first location that is substantially on the tether sphere. The method involves transitioning the aerial vehicle from the hover-flight orientation to a forward-flight orientation, such that the aerial vehicle moves from the tether sphere. And the method involves operating the aerial vehicle in the forward-flight orientation to ascend at an angle of ascent to a second location that is substantially on the tether sphere. The first and second locations are substantially downwind of the ground station.
Abstract:
In a target-shooting simulation system, a master control unit issues flight control instructions to a flight-capable drone to cause the drone to fly along a predetermined flight path and receives GPS coordinates transmitted by a control unit of the drone as the drone flies along the predetermined flight path. The master control unit additionally obtains GPS coordinates, orientation and motion information with respect to a replica firearm, detects actuation of a trigger of the replica firearm and, in response to detecting actuation of the trigger, determines, based on the GPS coordinates of the drone and the GPS coordinates, orientation and motion information with respect to the replica firearm, whether a trajectory of a theoretical shot fired by the replica firearm at time of the trigger actuation will intercept the drone as it flies along the predetermined flight path.
Abstract:
An airborne laser weapon system is divided into a ground-based unit and an airborne unit. The relatively heavy components of the laser weapon system, such as the generator, cooling elements with cooling fluid, accumulators, pump diodes, beam couplers and the control station for an operator, are concentrated and/or arranged in the ground-based part. The relatively lightweight components and/or those that ultimately determine the quality of the laser beam, such as active laser element(s), in particular the output stage(s) thereof, the focusing drive, the telescope and the necessary sensors, may be provided on the airborne platform and may be connected by means of a relatively long, e.g. multiple kilometers, optical waveguide to the ground-based part.
Abstract:
An autonomous vehicle platform and system for selectively performing an in-season management task in an agricultural field while self-navigating between rows of planted crops, the autonomous vehicle platform having a vehicle base with a width so dimensioned as to be insertable through the space between two rows of planted crops, the vehicle base having an in-season task management structure configured to perform various tasks, including selectively applying fertilizer, mapping growth zones and seeding cover crop within an agricultural field.
Abstract:
A remote worksite monitoring system is provided. The remote worksite monitoring system includes a machine operating at a worksite, The remote worksite monitoring system also includes an Unmanned Aerial Vehicle (UAV) associated with the machine. The UAV includes a control module and a sensor module. The UAV is adapted to fly to a location proximate to an area at which the machine is present. The UAV is adapted to directly communicate with the machine over a first communication network to at least one of receive machine data from the machine and transfer data to the machine when direct communication between the machine and a remote control station cannot be established. Further, the UAV is adapted to transmit the machine data received from the machine to the remote control station over a second communication network.
Abstract:
A multi-modular aerial firefighting control method and apparatus for use by firefighters to control fire. The multi-modular aerial firefighting control method and apparatus generally includes multi-modular units that are held together to form an aerial firefighting system. The modular units may work together or independently. The multi-modular system comprises more than one modular unit, fluid, fluid conduit, reservoir, air flow generator, multi-modular unit support structure, aerial suspension system and aerial lift system.