Abstract:
In one embodiment, a controller instructs an unmanned aerial vehicle (UAV) docked to a landing perch to perform a pre-flight test operation of a pre-flight test routine. The controller receives sensor data associated with the pre-flight test operation from one or more force sensors of the landing perch, in response to the UAV performing the pre-flight test operation. The controller determines whether the sensor data associated with the pre-flight test operation is within an acceptable range. The controller causes the UAV to launch from the landing perch based in part on a determination that UAV has passed the pre-flight test routine.
Abstract:
An aerial vehicle docking system includes a landing pad and an aerial vehicle. The landing pad has a concave landing surface and a depression. The aerial vehicle has landing gear and a protrusion. The protrusion is shaped to mate with the depression. The protrusion and the landing gear are positioned on a bottom surface of the aerial vehicle.
Abstract:
Systems and methods are provided for docking an unmanned aerial vehicle (UAV) with a vehicle. The UAV may be able to distinguish a companion vehicle from other vehicles in the area and vice versa. The UAV may take off and/or land on the vehicle. The UAV may be used to capture images and stream the images live to a display within the vehicle. The vehicle may control the UAV. The UAV may be in communication with the companion vehicle while in flight.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust vectoring module and a second thrust vectoring module, and an electronics module. The electronics module provides commands to the two thrust vectoring modules. The two thrust vectoring modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as thrust vectoring modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
Embodiments of the present invention relate to an unmanned aerial vehicle (UAV) and a method of use. The UAV may comprise a UAV platform designed around a sensor system. The UAV platform may adjust itself in order to stabilize the sensor system. The UAV platform may comprise front UAV wings, back UAV wings, and a payload chamber. The front UAV wings and back UAV wings may adjust themselves by rotating about a line approximately perpendicular to the UAV's flight line. The payload chamber may adjust itself by rotating about the UAV's flight line. The sensor system may be located in an optimal location on the UAV platform, for example, behind the nose as far back as the front UAV wings. The sensor system may comprise an infrared (IR) and a visible camera.
Abstract:
A computing system receives sensor data that includes, for a reporting aeronautical vehicle of a set of one or more reporting aeronautical vehicles, one or more images captured by the reporting aeronautical vehicle. For the image of the sensor data, the computing system identifies one or more candidate landing zones within the image. For the candidate landing zone identified, the computing system estimates a geographic position of the candidate landing zone; and associates an identifier of the candidate landing zone with the geographic position. The computing system receives, from a client device, a request for a landing zone for an aeronautical vehicle. Responsive to the request, the computing system selects from among the one or more candidate landing zones, a target candidate landing zone; and sends the geographic position estimated for the target candidate landing zone to the client device.
Abstract:
A base station for an unmanned aerial vehicle (UAV) is disclosed. The base station includes: an enclosure; a slide mechanism that is connected to the enclosure and which is repositionable between a retracted position and an extended position; a cradle that is connected to the slide mechanism and which is configured for docking with the UAV such that the UAV is movable into and out of the enclosure during repositioning of the slide mechanism between the retracted position and the extended position; and a charging hub that is connected to the slide mechanism and which is configured for electrical connection to a power source of the UAV to charge the power source.
Abstract:
This disclosure describes a moonroof accessory panel. The moonroof accessory panel may be a structure that may be removably attached to a moonroof area of a vehicle. The moonroof accessory panel may be used to hold a drone associated with the vehicle such that the drone may take-off from and land on the moonroof accessory panel. The top of the moonroof accessory panel may also be accessible from the cabin of the vehicle such that a user may place the drone on top of the moonroof accessory panel while inside the cabin. The moonroof accessory panel may also be used for other purposes beyond holding drones as well.
Abstract:
A ducted fan unmanned aerial vehicle (UAV) docking station is provided. The docking station comprises: a guide sized to receive a ducted fan UAV; and a housing communicatively coupled to the guide. The housing comprises: a storage assembly comprising: at least one compartment sized to store the UAV; and at least one dampening system coupled to the at least one storage compartment for cushioning the UAV.