-
公开(公告)号:US20180081363A1
公开(公告)日:2018-03-22
申请号:US15811183
申请日:2017-11-13
Applicant: Hangzhou Zero Zero Technology Co., Ltd.
Inventor: Zheng Qu , Pengxiang Jin , Tong Zhang
CPC classification number: G05D1/0088 , B64C39/024 , B64C2201/027 , B64C2201/108 , B64C2201/14 , B64C2201/141 , B64C2201/182 , G05D1/0016 , G05D1/0033 , G05D1/042 , G05D1/0669 , G05D1/0858
Abstract: An aerial system, preferably including one or more proximity sensors, such as sensors arranged in opposing directions. A method for aerial system operation, preferably including: determining a set of sensors; sampling measurements at the set of sensors; localizing the aerial system based on the measurements, such as to determine one or more obstacle clearances; and controlling system flight, such as based on the clearances.
-
72.
公开(公告)号:US20180050823A1
公开(公告)日:2018-02-22
申请号:US15421732
申请日:2017-02-01
Applicant: Aerovel Corporation
Inventor: Brian T. McGeer
IPC: B64F1/04
CPC classification number: B64F1/04 , B64C29/02 , B64C39/024 , B64C2201/08 , B64C2201/182
Abstract: Automated launch and retrieval of a “tail-sitting” VTOL aircraft is accomplished by exploiting the natural stability of hover when restrained in tension by an upwind wing tip. For retrieval, a flexible rod is lifted into contact with the trailing edge of the upwind wing as the aircraft translates downwind overhead. Sliding between the rod and wing leads to interlocking of hooks at the rod end and wing tip, while the aircraft swings into a stable tethered hover downwind of the rod. The rod is then used to pull the aircraft upwind into a fixture for secure parking and servicing. After servicing, the aircraft lifts-off into tethered hover, and power margin for climb is assessed. If the aircraft is judged to have sufficient power safely to proceed, then the interlocking hooks are disengaged, leaving the aircraft to climb away in free flight.
-
公开(公告)号:US09896222B2
公开(公告)日:2018-02-20
申请号:US14939893
申请日:2015-11-12
Applicant: Insitu, Inc.
Inventor: Peter Kunz , Clifford Jackson , Craig Aram Thomasian
CPC classification number: B64F1/02 , B64C25/68 , B64C39/024 , B64C2201/182
Abstract: Capture devices for unmanned aerial vehicles, including track borne capture lines, and associated systems and methods are disclosed. A representative system includes at least one support having an upright portion and at least one boom portion, a carriage track carried by the at least one boom portion, and a carriage carried by, and movable along, the carriage track. The system can further include a capture line carried by and extending downwardly from the at least one boom portion, or the carriage, or both the at least one boom portion and the carriage.
-
公开(公告)号:US09896208B2
公开(公告)日:2018-02-20
申请号:US14951527
申请日:2015-11-25
Applicant: Alan Retig , David J Kreher
Inventor: Alan Retig , David J Kreher
IPC: B64D5/00
CPC classification number: B64D5/00 , B64C39/024 , B64C2201/021 , B64C2201/082 , B64C2201/182 , B64C2201/206
Abstract: The present disclosure reveals a drone deployment system for use from an airborne aircraft such that the drone deployment system is capable of moving through the aircraft, picking up a drone with a grappling means attached to an extendable arm, moving to an opening in the aircraft, extending and deploying the drone. The drone deployment system is further capable of retrieving a drone by having the extendable arm extended out the opening in the aircraft, having the drone fly into the grappling means which then engages, holding the drone, and the extendable arm is then retractable so that the opening can be closed and the drone placed in storage.
-
公开(公告)号:US20180029723A1
公开(公告)日:2018-02-01
申请号:US15548834
申请日:2016-01-28
Applicant: AIROBOTICS LTD.
Inventor: Ran Krauss , Meir Kliner
CPC classification number: B64F1/00 , B64C39/024 , B64C2201/066 , B64C2201/182 , B64C2201/201 , B64F1/02 , B64F1/12 , B64F1/18 , G05D1/0676
Abstract: A system for homing and recharging an unmanned vehicle comprises a plurality of homing layers operative along the radius of an imaginary circle that has the homing target at its center, each homing layer consisting of a sub-system provided with location means of increasing accuracy relative to that of a sub-system that operates along said radius farther away, from the center of said circle.
-
公开(公告)号:US09873525B2
公开(公告)日:2018-01-23
申请号:US15416245
申请日:2017-01-26
Applicant: Jose Cruz Chavez, Jr.
Inventor: Jose Cruz Chavez, Jr.
CPC classification number: B64F1/02 , B64C39/024 , B64C2201/021 , B64C2201/182
Abstract: A method for retrieving an unmanned aircraft is provided. The retrieval device may include a frame that supports a flexible material. The flexible material may form a receptacle portion shaped to receive the unmanned aircraft. The flexible material may absorb at least a portion of the energy exerted by the aircraft landing within the receptacle portion. Wheels may be connected to the frame to further control and absorb energy from the landing.
-
公开(公告)号:US20170349283A1
公开(公告)日:2017-12-07
申请号:US15175453
申请日:2016-06-07
Applicant: The Boeing Company
Inventor: James Louis Paunicka , Jacob R. Irwin , Alexander David Lee , Ryan L. Hupp
CPC classification number: B64D5/00 , B64C39/024 , B64C2201/182 , B64C2201/206
Abstract: Presently disclosed systems and methods are configured for in-flight retrieval of unmanned aerial vehicles (UAVs). Such systems generally include a retrieval ramp, a tether system including a tether, and a capture connector. The retrieval ramp is configured to be moved between a stowed configuration and an extended configuration, in which at least a portion of the retrieval ramp is positioned outside the aircraft for retrieval of the UAV. The tether system is moveable to a capture configuration, in which a terminal tether end of the tether is positioned beyond a terminal end of the retrieval ramp, typically outside of turbulence generated by the aircraft. The system is configured to position the retrieval ramp, the tether system, and the capture connector in order to engage the UAV with the capture connector. Once captured, the system may move the UAV into the aircraft as the tether is retracted towards a retracted configuration.
-
78.
公开(公告)号:US20170327228A1
公开(公告)日:2017-11-16
申请号:US15432571
申请日:2017-02-14
Applicant: Hood Technology Corporation
Inventor: Andreas H. von Flotow , Corydon C. Roeseler , Daniel Pepin Reiss
CPC classification number: B64C27/48 , B64C25/08 , B64C27/001 , B64C27/08 , B64C27/26 , B64C27/32 , B64C39/024 , B64C2027/003 , B64C2201/021 , B64C2201/024 , B64C2201/027 , B64C2201/042 , B64C2201/082 , B64C2201/108 , B64C2201/12 , B64C2201/146 , B64C2201/182 , B64C2201/201 , B64D1/00 , B64D1/02 , B64D1/12 , B64D3/00 , B64D5/00 , B64D35/02 , B64F1/02 , B65D25/10 , B65D85/68 , B65D2585/687
Abstract: The present disclosure provides various embodiments of a multicopter-assisted launch and retrieval system generally including: (1) a multi-rotor modular multicopter attachable to (and detachable from) a fixed-wing aircraft to facilitate launch of the fixed-wing aircraft into wing-borne flight; (2) a storage and launch system usable to store the modular multicopter and to facilitate launch of the fixed-wing aircraft into wing-borne flight; and (3) an anchor system usable (along with the multicopter and a flexible capture member) to retrieve the fixed-wing aircraft from wing-borne flight.
-
79.
公开(公告)号:US20170327212A1
公开(公告)日:2017-11-16
申请号:US15432483
申请日:2017-02-14
Applicant: Hood Technology Corporation
Inventor: Andreas H. von Flotow , Corydon C. Roeseler
CPC classification number: B64C27/48 , B64C25/08 , B64C27/001 , B64C27/08 , B64C27/26 , B64C27/32 , B64C39/024 , B64C2027/003 , B64C2201/021 , B64C2201/024 , B64C2201/027 , B64C2201/042 , B64C2201/082 , B64C2201/108 , B64C2201/12 , B64C2201/146 , B64C2201/182 , B64C2201/201 , B64D1/00 , B64D1/02 , B64D1/12 , B64D3/00 , B64D5/00 , B64D35/02 , B64F1/02 , B65D25/10 , B65D85/68 , B65D2585/687
Abstract: The present disclosure provides various embodiments of a multicopter-assisted launch and retrieval system generally including: (1) a multi-rotor modular multicopter attachable to (and detachable from) a fixed-wing aircraft to facilitate launch of the fixed-wing aircraft into wing-borne flight; (2) a storage and launch system usable to store the modular multicopter and to facilitate launch of the fixed-wing aircraft into wing-borne flight; and (3) an anchor system usable (along with the multicopter and a flexible capture member) to retrieve the fixed-wing aircraft from wing-borne flight.
-
公开(公告)号:US09776717B2
公开(公告)日:2017-10-03
申请号:US14873399
申请日:2015-10-02
Applicant: The Boeing Company
Inventor: Charles B. Spinelli , John Lyle Vian
CPC classification number: B64C39/024 , A01B79/005 , B64C27/08 , B64C33/00 , B64C2201/021 , B64C2201/024 , B64C2201/12 , B64C2201/123 , B64C2201/182 , B64C2201/208 , B64F1/007 , B64F1/222
Abstract: An apparatus comprises a base vehicle, a takeoff and landing system, a rack system, a refueling system associated with the base vehicle, and a controller. The rack system comprises a group of racks with slots in which the slots receive unmanned aerial vehicles, provide refueling connections that facilitate refueling of the unmanned aerial vehicles located in the slots, and provide data connections that facilitate data transmission with the unmanned aerial vehicles located in the slots. The refueling system refuels an unmanned aerial vehicle located in a slot using a refueling connection in the refueling connections. The controller communicates with the unmanned aerial vehicle using a data connection and control the refueling of the unmanned aerial vehicles by the refueling system while the unmanned aerial vehicle is in the slot, enabling exchanging data with the unmanned aerial vehicle and the refueling of the unmanned aerial vehicle simultaneously.
-
-
-
-
-
-
-
-
-