Abstract:
A method can be used for producing a microelectromechanical transducer. A plurality of microelectromechanical transducers are produced on a single wafer. Each transducer includes a diaphragm. The wafer is divided into at least a first and a second region. The mechanical tensions of a random sample of diaphragms of the first region are established and the values are compared with a predetermined desired value. The mechanical tensions of a random sample of diaphragms of the second region are established and the values are compared with the predetermined desired value. The tensions of the diaphragms in the first region are adjusted to the predetermined desired value, and the tensions of the diaphragms in the second region are adjusted to the predetermined desired value.
Abstract:
A sport-boot pressure monitoring system and method of use. The system includes a left boot sensor having a left flexible fluid-containing bladder shaped to fit between a user's left leg and an interior surface of a left boot worn by the user and a left pressure sense element in pressure-sensing communication with the left flexible fluid-containing bladder, a right boot sensor that is similar to the left one, and a controller to provide a pressure alert if pressure between one of the user's legs and the interior surface of the boot worn on that leg violates a predetermined pressure threshold and to provide a proximity alert if a distance between the left and right boots violates a predetermined proximity threshold.
Abstract:
The electronic device comprises a semiconductor chip comprising a first main face, a second main face opposite to the first main face, side faces connecting the first and second main faces, and a sensor element or actuator element disposed at the first main face, and a substrate, wherein the semiconductor chip is disposed above the substrate, the first main face of the semiconductor chip facing the substrate, wherein the substrate comprises a substrate opening, the substrate opening permitting passage of signals to the sensor element or from the actuator element.
Abstract:
The present disclosure provides MEMS devices and their fabrication methods. A first dielectric layer is formed on a substrate including integrated circuits therein. One or more first metal connections and second metal connections are formed in the first dielectric layer and are electrically connected to the integrated circuits. A second dielectric layer is formed on the first dielectric layer. An acceleration sensor is formed in the second dielectric layer to electrically connect to the one or more first metal connections. One or more first metal vias are formed in the second dielectric layer to electrically connect to the second metal connections. A pressure sensor is formed on the second dielectric layer to electrically connect to the first metal vias. The MEMS devices provided by the present disclosure are compact in size through the integration of the acceleration sensor and the pressure sensor.
Abstract:
A pressure sensor using the MEMS device comprises an airtight ring surrounding a chamber defined by the first substrate and the second substrate. The airtight ring extends from the upper surface of the second substrate to the surface between the first substrate and the second substrate and further breaks out the surface. The pressure sensor utilizes the airtight ring to retain the airtightness of the chamber. The manufacture method of the pressure sensor is also disclosed.
Abstract:
A MEMS device is provided with: a supporting base, having a bottom surface in contact with an external environment; a sensor die, which is of semiconductor material and integrates a micromechanical detection structure; a sensor frame, which is arranged around the sensor die and is mechanically coupled to a top surface of the supporting base; and a cap, which is arranged above the sensor die and is mechanically coupled to a top surface of the sensor frame, a top surface of the cap being in contact with an external environment. The sensor die is mechanically decoupled from the sensor frame.
Abstract:
A system and a method for forming a packaged MEMS device are disclosed. In one embodiment a packaged MEMS device includes a MEMS device having a first main surface with a first area along a first direction and a second direction, a membrane disposed on the first main surface of the MEMS device and a backplate adjacent to the membrane. The packaged MEMS device further includes an encapsulation material that encapsulates the MEMS device and that defines a back volume, the back volume having a second area along the first direction and the second direction, wherein the first area is smaller than the second area.
Abstract:
This document refers to multi-die micromechanical system (MEMS) packages. In an example, a multi-die MEMS package can include a controller integrated circuit (IC) configured to couple to a circuit board, a MEMS IC mounted to a first side of the controller IC, a through silicon via extending through the controller IC between the first side and a second side of the controller IC, the second side opposite the first side, and wherein the MEMS IC is coupled to the through silicon via.
Abstract:
A first semiconductor substrate having at least one integrated semiconductor device is provided. A lift-off layer is formed on a main surface of the first semiconductor substrate. The lift-off layer is patterned so as to form openings in the lift-off layer that are arranged on either side of a first portion of the lift-off layer. The first substrate is connected together with a second substrate by an interconnect structure to form an assembly with the main surface of the first semiconductor substrate being exposed. Exposed surfaces of the assembly are coated with a parylene coating, with a first portion of the parylene coating being supported by the first portion of the lift-off layer. The first portion of the parylene coating is selectively removed using a lift-off technique that removes the first portion of the lift-off layer. The lift-off technique is performed after connecting the first substrate and second substrates together.
Abstract:
The present disclosure relates an integrated chip having one or more MEMS devices. In some embodiments, the integrated chip has a carrier substrate with one or more cavities disposed within a first side of the carrier substrate. A dielectric layer is disposed between the first side of the carrier substrate and a first side of a micro-electromechanical system (MEMS) substrate. The dielectric layer has sidewalls that are laterally set back from sidewalls of openings extending through the MEMs substrate to the one or more cavities. A bonding structure, including an intermetallic compound having a plurality of metallic elements, abuts a second side of the MEMS substrate and is electrically connected to a metal interconnect layer within a dielectric structure disposed over a CMOS substrate.