Abstract:
The integrated circuit comprises a support substrate having opposite first and second main surfaces. A cavity passes through the support substrate and connects the first and second main surfaces. The integrated circuit comprises a device with a mobile element, the mobile element and a pair of associated electrodes of which are included in a cavity. An anchoring node of the mobile element is located at the level of the first main surface. The integrated circuit comprises a first elementary chip arranged at the level of the first main surface and electrically connected to the device with a mobile element.
Abstract:
Micromechanical membranes suitable for formation of mechanical resonating structures are described, as well as methods for making such membranes. The membranes may be formed by forming cavities in a substrate, and in some instances may be oxidized to provide desired mechanical properties. Mechanical resonating structures may be formed from the membrane and oxide structures.
Abstract:
A microelectromechanical system (MEMS) solar cell device. The MEMS solar cell device includes a substrate, a sensing membrane exposed to light radiation being spaced from the substrate, a collector electrode disposed between the substrate and the sensing membrane, and a cavity defined between the sensing membrane and the collector electrode. The collector electrode collects charge carriers generated by light radiation on the sensing membrane within the cavity. A solar module or panel may be provided including a plurality of the cells arranged in an array on a substrate.
Abstract:
A MEMS structure having a temperature-compensated resonator member is described. The MEMS structure comprises an asymmetric stress inverter member coupled with a substrate. A resonator member is housed in the asymmetric stress inverter member and is suspended above the substrate. The asymmetric stress inverter member is used to alter the thermal coefficient of frequency of the resonator member by inducing a stress on the resonator member in response to a change in temperature.
Abstract:
A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.
Abstract:
An electromechanical resonator includes a resonator portion which includes a fixed electrode and an oscillator formed separately from the fixed electrode with a gap. The gap has a first gap region and a second gap region which are arranged in a thickness direction of the fixed electrode. The first gap region is different in width from the second gap region.
Abstract:
A piezoelectric device includes: a piezoelectric resonator element; a package storing the piezoelectric resonator element therein in a manner to mount the piezoelectric resonator element on a base portion thereof composed of at least three layers that are layered; and a through hole penetrating through the base portion. In the device, the through hole includes a first hole formed on a first layer which is positioned to face the piezoelectric resonator element among the three layers; a second hole formed on a second layer contacting with the first layer; a third hole formed larger than the second hole on a third layer contacting with the second layer; and a metal coat formed on an inner wall surface of the second hole, and a sealing part for sealing the package is formed with a sealant in at least the second hole.
Abstract:
Micro-electromechanical system (MEMS) devices and methods of manufacture thereof are disclosed. In one embodiment, a MEMS device includes a first semiconductive material and at least one trench disposed in the first semiconductive material, the at least one trench having a sidewall. An insulating material layer is disposed over an upper portion of the sidewall of the at least one trench in the first semiconductive material and over a portion of a top surface of the first semiconductive material proximate the sidewall. A second semiconductive material or a conductive material is disposed within the at least one trench and at least over the insulating material layer disposed over the portion of the top surface of the first semiconductive material proximate the sidewall.
Abstract:
An oscillator having a quartz resonator, and a base wafer containing active electronics, wherein the quartz resonator is bonded directly to the base wafer and subsequently hermetically capped.
Abstract:
A surface mountable transducer package is provided, the design of which allows a thin package profile to be achieved. An encapsulation layer bonds to a surface of each of the terminal pads and encapsulates a portion of the transducer and at least a portion of the signal processing IC.