Abstract:
Methods and structures that may be implemented in one example to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) such as sensors and actuators. For example, structures having varying characteristics may be fabricated using the same basic process flow by selecting among different process options or modules for use with the basic process flow in order to create the desired structure/s. Various process flow sequences as well as a variety of device design structures may be advantageously enabled by the various disclosed process flow sequences.
Abstract:
An integrated MEMS device is provided. The integrated MEMS device comprises a circuit chip and a device chip. The circuit chip has a patterned first bonding layer disposed thereon, the bonding layer being composed of a conductive material/materials. The device chip has a first structural layer and a second structural layer, the first structural layer being connected to the second structural layer and the first bonding layer of the circuit chip, and being sandwiched between the second structural layer and the circuit chip. A plurality of hermetic spaces are enclosed by the first structural layer, the second structural layer, the first bonding layer and the circuit chip.
Abstract:
An integrated MEMS device and its manufacturing method are provided. In the manufacturing method, the sacrificial layer is used to integrate the MEMS wafer and the circuit wafer. The advantage of the present invention comprises preventing films on the circuit wafer from being damaged during process. By the manufacturing method, a mechanically and thermally stable structure material, for example: monocrystalline silicon and polysilicon, can be used. The integrated MEMS device manufactured can also possess the merit of planar top-surface topography with high fill factor. The manufacturing method is especially suitable for manufacturing MEMS array device.
Abstract:
The integration of pressure or inertial sensors into an integrated circuit fabrication and packaging flow is described. In one example, a diaphragm is formed by depositing a metal over a first dielectric layer. A second dielectric layer is formed over the diaphragm. A metal mesh layer is formed over the second dielectric. The first dielectric layer is etched under the diaphragm to form a cavity. The cavity is lined with a sealing layer. The cavity is covered to form a chamber adjoining the diaphragm, and the cover is sealed against the cavity.
Abstract:
Trapped sacrificial structures and thin-film encapsulation methods that may be implemented to manufacture trapped sacrificial structures such as relative humidity sensor structures, and spacer structures that protect adjacent semiconductor structures extending above a semiconductor die substrate from being contacted by a molding tool or other semiconductor processing tool in an area of a die substrate adjacent the spacer structures.
Abstract:
Methods and structures that may be implemented in one example to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) such as sensors and actuators. For example, structures having varying characteristics may be fabricated using the same basic process flow by selecting among different process options or modules for use with the basic process flow in order to create the desired structure/s. Various process flow sequences as well as a variety of device design structures may be advantageously enabled by the various disclosed process flow sequences.
Abstract:
In a method of manufacturing a semiconductor integrated circuit device having an MEMS element over a single semiconductor chip, the movable part of the MEMS element is fixed before the formation of a rewiring. After formation of the rewiring, the wafer is diced. Then, the movable part of the MEMS element is released by etching the wafer.
Abstract:
An integrated MEMS device and its manufacturing method are provided. In the manufacturing method, the sacrificial layer is used to integrate the MEMS wafer and the circuit wafer. The advantage of the present invention comprises preventing films on the circuit wafer from being damaged during process. By the manufacturing method, a mechanically and thermally stable structure material, for example: monocrystalline silicon and polysilicon, can be used. The integrated MEMS device manufactured can also possess the merit of planar top-surface topography with high fill factor. The manufacturing method is especially suitable for manufacturing MEMS array device.
Abstract:
Magnet placement is described for integrated circuit packages. In one example, a terminal is applied to a magnet. The magnet is then placed on a top layer of a substrate with solder between the terminal and the top layer, and the solder is reflowed to attach the magnet to the substrate.
Abstract:
In a method of manufacturing a semiconductor integrated circuit device having an MEMS element over a single semiconductor chip, the movable part of the MEMS element is fixed before the formation of a rewiring. After formation of the rewiring, the wafer is diced. Then, the movable part of the MEMS element is released by etching the wafer.