Abstract:
An apparatus and method for electrochemically generating and using an aqueous solution containing chlorine dichloride and a metal hypochlorite, such as sodium hypochlorite. The aqueous solution provides a mouth rinse for oral hygiene or a sterilizing solution for surgical or dental tools or for treating drinking water. The generator comprises a chamber, an anode and a cathode disposed for fluid communication with a reservoir, and an electrical power source for applying a voltage between the anode and the cathode. The reservoir contains an electrolyte having a metal chlorite and, optionally, a metal chloride, citric acid, sweeteners, flavorings and combinations thereof. The anode is preferably a dimensionally stable anode coated with RuO2, IrO2 or combinations thereof. The cathode may be made of titanium substrate coated with platinum. The apparatus and method generate an aqueous solution containing chlorine dioxide that may be used immediately for oral hygiene.
Abstract:
A method and apparatus for treatment of a fluid medium to inactivate biocontamination using a pulsed electric field (PEF). A fluid medium is pumped through a treatment assembly to treat the fluid medium. A pulse generating system produces input pulses of high voltage that are supplied to the treatment assembly. A pulsed high intensity electric field associated with the input pulses is produced in a treatment assembly. As the fluid medium flows through the treatment assembly, it is exposed to the high intensity electric field, thereby treating the fluid medium. The pulse generating system includes a pulse compressor to reduce the rise time of the high voltage pulses supplied to the treatment assembly, and forming a pulsed electric field in space, without use of an electrode system.
Abstract:
A medium having a support structure configured for circulation of a fluid therein, such as a replaceable filter cartridge, including a sanitizing agent which contains one or more reactants that are chemically configured for delivering chlorine dioxide or other sanitizing agents in a controlled dose to sanitize, deodorize, and disinfect upon being wetted by the fluid and positioned in the medium support structure to be exposed to the fluid circulating therein.
Abstract:
The present invention comprises an insertion type electrode adapted to operate at modulated high voltages by use of a thin layer polyer as a dielectric.
Abstract:
A filter assembly for use with a bottle having a circular cross-section neck or open end includes a fine filtration media having a mean pore size of about 1-3 microns and capable of removing contaminants of 3-4 micron size and larger, and an inner filtration media disposed radially inward of the fine filtration media. The inner filtration media includes activated carbon, preferably a porous activated carbon/plastic matrix having a porosity of between about 10-150 microns. The outer housing contains the fine filtration media and the inner filtration media, and is dimensioned to pass through the neck or open end of the bottle. The fine filtration media preferably comprises sheets on opposite faces of a microfiber filter media formed of glass microfibers of varying cross-sectional diameters, with the fine filtration media in a pleated or accordion configuration. A filter assembly may also be provided having a spring pressed straw. The filter assembly may also include a generally tubular plastic housing with a number of ribs each having an inner surface and an outer surface at least 50% larger than the inner surface. The filter element may also be provided comprising a porous rigid matrix of at least 35% activated carbon, styrene, and metal removing polymer bound to the styrene. Also the filter assembly may have a filter element housing extending upwardly from and operatively connected to a cap and having a maximum cross-sectional area at least 20% larger than the cap top area, for example in the form of a disc or a sphere. The filter may be formed by mating hemispherical portions, and the housing may have a novelty configuration.
Abstract:
Treatment systems for treating flowable food products using electrical pulses to inactivate microbes. Systems described include one or more stages having flow-through processors. The flow-through processors have first and second electrodes which are spaced across a treatment chamber in which an intense electrical field is generated using bipolar electrical pulses. The treatment chamber is temperature stabilized to improve processing and minimize surface buildup on the electrodes. Oversized processor electrodes can be used such as in conjunction with an electrode spacer to provide a treatment zone having a relatively uniform and high electrical field strength.
Abstract:
Electroheating apparatus and methods utilize a dielectric structure defining a conduit course of relatively small cross-sectional area and electrode surfaces of relatively large area so that the electrical current density in a region of the conduit remote from the electrodes is substantially higher than the current density at the electrode surfaces themselves. The system uses relatively high electrical resistance and relatively high voltages to provide substantial heating effect with low total currents. Foods such as liquid egg can be pasteurized.
Abstract:
An electrochemical cell for the treatment of water and/or water solutions comprises an internal electrode having a middle section and a pin-end at each end thereof, the diameter of each pin-end being not more than 0.75 of the diameter of the middle section; an external electrode mounted around the internal electrode; and a coaxial ceramic diaphragm mounted in a separate inter-electrode space in an electrode chamber of the cell. The external electrode is mounted in lower and upper dielectric bushings. Both the internal electrode and the external electrode are connected with positive and negative poles of a power supply. The cell further includes an upper dielectric collector head and a lower dielectric collector head which each have an axial channel; each collector head being installed in the bushing slots and adapted for turning therein. The diaphragm being fastened by elastic gaskets mounted in the slots of the bushings. The diameter of the middle section of the internal electrode being defined by the formula:2M
Abstract:
A method of electrocoat painting using tubular guarded membrane electrode cells. An object-to-be-electrocoat painted, or counter-electrode, is positioned or moved into a paint bath. Electrical current flow is induced between the membrane electrode cells and the counter-electrodes through the tubular guard, with the tubular guard having openings of a type that particularly allow for the flow of electricity between the electrode cells and the counter-electrode for a substantially continuous flow of paint particles around the membrane electrode cells. After painting, the counter-electrode is removed from the paint bath. Flushing fluid may be passed through the membrane electrode cells.
Abstract:
A method for removing contaminants from a flow of wastewater using an electrolytic oxidation vessel having a chamber and at least one elongate cathode electrode and a plurality of elongate sacrificial anode electrodes aligned parallel with the cathode electrode in the chamber. The flow of wastewater is directed through the chamber of the electrolytic oxidation vessel in a direction parallel with the cathode and anode electrodes so that the flow of wastewater engages the cathode and anode electrodes. A voltage is applied across the cathode electrode and the sacrificial anode electrodes to create a current having a density ranging from approximately 5-7 ma/sq. cm so as to release ions from the anode electrodes which oxidize and render insoluble contaminants in the flow of wastewater and create insoluble contaminants and substantially cleansed water. The insoluble contaminants are separated from the substantially cleansed water. An apparatus for use with the method is provided.