Abstract:
An optical fiber containing alkali metal elements or the like in which Rayleigh scattering loss can be reduced is provided. An optical fiber includes a core composed of silica glass and a cladding which surrounds the core, has a refractive index lower than a refractive index of the core, and is composed of silica glass containing fluorine. The core contains a first group of dopants and a second group of dopants having a diffusion coefficient lower than a diffusion coefficient of the first group of dopants. The difference between the maximum value and the minimum value of residual stress in the optical fiber is 150 MPa or less.
Abstract:
A single mode optical fiber having a core made from silica and less than or equal to about 11 weight % germania and having a maximum relative refractive index Δ1MAX. The optical fiber also has an inner cladding surrounding the core and having a minimum relative refractive index Δ2MIN, a first outer cladding surrounding the inner cladding and a second outer cladding surrounding the first outer cladding. The viscosity at 1650° C. of the second outer cladding minus the viscosity at 1650° C. of the first outer cladding is greater than 0.1e7 Poise, and Δ1MAX>Δ2MIN. The single mode optical fiber may also have an outer cladding surrounding the inner cladding made from silica or SiON. The first outer cladding has a maximum relative refractive index Δ3MAX, and Δ3MAX>Δ2MIN.
Abstract:
A single mode optical fiber having a core made from silica and less than or equal to about 11 weight % germania and having a maximum relative refractive index Δ1MAX. The optical fiber also has an inner cladding surrounding the core and having a minimum relative refractive index Δ2MIN, a first outer cladding surrounding the inner cladding and a second outer cladding surrounding the first outer cladding. The viscosity at 1650° C. of the second outer cladding minus the viscosity at 1650° C. of the first outer cladding is greater than 0.1e7 Poise, and Δ1MAX>Δ2MIN. The single mode optical fiber may also have an outer cladding surrounding the inner cladding made from silica or SiON. The first outer cladding has a maximum relative refractive index Δ3MAX, and Δ3MAX>Δ2MIN.
Abstract:
The present invention relates to an MMF with a structure for relaxing wavelength dependence of transmission bandwidth. In the MMF, a doping amount of a dopant for control of refractive index is adjusted, so as to make each of an OFL bandwidth at a wavelength of 850 nm and an OFL bandwidth at a wavelength of at least one of 980 nm, 1060 nm, and 1300 nm become not less than 1500 MHz·km, make the OFL bandwidth at the wavelength of at least one of 980 nm, 1060 nm, and 1300 nm become wider than the OFL bandwidth at the wavelength of 850 nm, and effectively suppress increase in transmission loss.
Abstract:
An optical fiber with large effective area, low bending loss and low attenuation. The optical fiber includes a core, an inner cladding region, and an outer cladding region. The core region includes a spatially uniform updopant to minimize low Rayleigh scattering and a relative refractive index and radius configured to provide large effective area. The inner cladding region features a large trench volume to minimize bending loss. The core may be doped with Cl and the inner cladding region may be doped with F.
Abstract:
The present disclosure is directed to a method of making an optical fiber with improved bend performance, the optical fiber having a core and at least one cladding layer, and a chlorine content in the in the last layer of the at least one cladding layer that is greater than 500 ppm by weight. The fiber is prepared using a mixture of a carrier gas, a gaseous chlorine source material and a gaseous reducing agent during the sintering of the last or outermost layer of the at least one cladding layer. The inclusion of the reducing gas into a mixture of the carrier gas and gaseous chlorine material reduces oxygen-rich defects that results in at least a 20% reduction in TTP during hydrogen aging testing.
Abstract:
An optical fiber having a reduced attenuation includes a silica glass core and a silica glass cladding. The silica glass core has substantially no germanium and includes a first core and a second core. The second core encloses the first core, the refractive index of the second core is larger than the refractive index of the first core, and the average value of halogen concentration of the second core is 5000 ppm or more. The silica glass cladding surrounds the second core and contains substantially no gemianium. The refractive index of the cladding is smaller than the refractive index of the first core.
Abstract:
An optical fiber with large effective area, low bending loss and low attenuation. The optical fiber includes a core, an inner cladding region, and an outer cladding region. The core region includes a spatially uniform updopant to minimize low Rayleigh scattering and a relative refractive index and radius configured to provide large effective area. The inner cladding region features a large trench volume to minimize bending loss. The core may be doped with Cl and the inner cladding region may be doped with F.
Abstract:
An optical fiber preform which can be drawn into a low attenuation optical fiber is provided with a core portion and a cladding portion surrounding the core portion. The core portion includes a first core portion and a second core portion surrounding the first core portion. The cladding portion includes a first cladding portion surrounding the second core portion and a second cladding portion surrounding the first cladding portion. The first core portion contains an alkali metal element, the concentration of oxygen molecules contained in glass is 30 mol ppb or more and 200 mol ppb or less in a part of or entire region having an alkali metal atom concentration of 100 atomic ppm or more, and the concentration of oxygen molecules contained in glass is 10 mol ppb or less in a region having an alkali metal atom concentration of 50 atomic ppm or less.
Abstract:
One embodiment of the disclosure relates to a method of making an optical fiber comprising the steps of: (i) exposing a silica based preform with at least one porous glass region having soot density of ρ to a gas mixture comprising SiCl4 having SiCl4 mole fraction ySiCl4 at a doping temperature Tdop such that parameter X is larger than 0.03 to form the chlorine treated preform, wherein X = 1 1 + [ ( ρ ρ s - ρ ) 0.209748 T dop Exp [ - 5435.33 / T dop ] y SiCl 4 3 / 4 ] and ρs is the density of the fully densified soot layer; and (ii) exposing the chlorine treated preform to temperatures above 1400° C. to completely sinter the preform to produce sintered optical fiber preform with a chlorine doped region; and (iii) drawing an optical fiber from the sintered optical preform.