Abstract:
A coating composition includes a flexible hyperbranched polyol preparable by (a) reacting a polyol comprising at least three hydroxyl groups with an aliphatic dicarboxylic acid having from 6 to 36 carbon atoms or an esterifiable derivative of the aliphatic dicarboxylic acid to form a hydroxyl-functional first intermediate product; (b) reacting the first intermediate product with a cyclic carboxylic acid anhydride to form a carboxylic acid-functional second intermediate product; and (c) reacting the second intermediate product with an epoxide-functional compound having one epoxide group to form the hyperbranched polyol. The coating composition may be cured to a coating layer having excellent flexibility.
Abstract:
The present invention provides block copolymers comprising at least one covalent polymer block and at least one supramolecular polymer block, processes for their preparations and uses thereof.
Abstract:
Provided are hyper nanocomposite, hyper nanocomposite coatings, devices, and articles including s hyper nanocomposite coatings. An article can include a surface including at least one region and a hyper nanocomposite coating disposed over the one region, wherein the hyper nanocomposite coating can include a plurality of nanoparticles substantially uniformly dispersed in one or more cross-linked hyperbranched polymers selected from the group consisting of polycarbosilane, polycarbosilixane, and polycarbosilazene, polyfluorocarbon.
Abstract:
The present disclosure provides a method of preparing a dual curable polymer, the method comprising the steps of: (a) reacting a peripheral reactive group of a dendritic polymer with a cross-linker compound having two or more moisture curable functional groups to form a functionalized dendritic polymer terminated with the moisture curable functional groups; and (b) reacting said functionalized dendritic polymer with an acrylic compound to form a substituted dendritic polymer having a mixture of acrylate functional groups and at least one peripheral moisture curable functional group.
Abstract:
The present invention relates to a polymer composition comprising: (i) one or more dendritic polymers; and (ii) a reactive diluent that is capable of being chemically coupled to the functional groups of the dendritic polymers, wherein when the dendritic polymer is coupled to the reactive diluent in the presence of a cross-linker, a polymerized solid is formed at high concentrations in a liquid medium. The present invention further relates to methods of preparing the polymer composition and its use in forming coatings.
Abstract:
This invention concerns a polymer coating material composition (PCM) comprising as components a polymer matrix, carbon nanotubes (CNT) as optical power limiters (OPL), and carbon rich molecules. One aspect of the invention is where the Polymer Matrix is a hyperbranched polymer, such as a hyperbranched polycarbosiloxane polymer. Another aspect of the invention is where the CNT is a short multiwall carbon nanotube (sMWNT). A further aspect of the invention is where the carbon-rich molecules are triethoxysilyl anthracene derivatives. The composition wherein the ratio in weight percent of Polymer Matrix to CNT to carbon-rich molecule is from 94:3:3 to 99.8:0.1:0.1. The composition can further contain one or more of multi-photon absorbers (MPA) chromophores or reverse saturable absorbers (RSA) chromophores. These compositions can be used as: a) a film, b) a coating, c) a liquid, d) a solution, or e) a sandwiched film between two transparent substrates.
Abstract:
A hard coating film that is curled to a height of less than 20 mm and has a pencil hardness of 3H or harder, the hard coating film including a hard coating agent that includes a hyperbranched (meth)acrylate oligomer having about 50 to about 200 (meth)acrylate groups, reactive nanoparticles, and a polyfunctional monomer.
Abstract:
A protective coating for protecting a surface has a liquid applied coating having 100% solids and zero solvents and/or zero volatile organic compounds. The resulting protective coating may be clear or transparent to visible light. The liquid applied coating has two or more components that is applied to a surface as a liquid and cured in place to form a solid coating. The liquid applied coating may be cast onto a surface after mixing and spread on the surface to a final desired thickness. The liquid applied coating has a polyurea or polyurethane, or a hybrid polyurea-polyurethane. The polymeric resin system may have dendrimers or hyperbranched polyol or polyamine raw materials in the formulation. The protective coating optionally contains no polyaspartic amines.
Abstract:
The present invention relates to quick-drying two-component polyurethane coating compositions, to processes for preparing them, and to their use.
Abstract:
This invention concerns a polymer coating material composition (PCM) comprising as components a polymer matrix, carbon nanotubes (CNT) as optical power limiters (OPL), and carbon rich molecules. One aspect of the invention is where the Polymer Matrix is a hyperbranched polymer, such as a hyperbranched polycarbosiloxane polymer. Another aspect of the invention is where the CNT is a short multiwall carbon nanotube (sMWNT). A further aspect of the invention is where the carbon-rich molecules are triethoxysilyl anthracene derivatives. The composition wherein the ratio in weight percent of Polymer Matrix to CNT to carbon-rich molecule is from 94:3:3 to 99.8:0.1:0.1. The composition can further contain one or more of multi-photon absorbers (MPA) chromophores or reverse saturable absorbers (RSA) chromophores. These compositions can be used as: a) a film, b) a coating, c) a liquid, d) a solution, or e) a sandwiched film between two transparent substrates.