Abstract:
A high adhesive strength and good conduction reliability can be realized when anisotropic connection is performed under compression conditions of a compression temperature of 130° C. and a compression time of 3 seconds using an anisotropic conductive film which uses a polymerizable acrylic compound capable of being cured at a comparatively lower temperature and in a comparatively shorter time than a thermosetting epoxy resin along with a film-forming resin. Consequently, an anisotropic conductive film has a structure in which an insulating adhesive layer and an anisotropic conductive adhesive layer are laminated. The insulating adhesive layer and the anisotropic conductive adhesive layer each contain a polymerizable acrylic compound, a film-forming resin, and a polymerization initiator. The polymerization initiator contains two kinds of organic peroxide having different one minute half-life temperatures. Of the two kinds of organic peroxide, the organic peroxide having the higher one minute half-life temperature produces benzoic acid or a derivative thereof by decomposition.
Abstract:
A semiconductor device includes a first connecting member having a first electrode, a second connecting member having a second electrode, and an anisotropic conductive film between the first connecting member and the second connecting member, the anisotropic conductive film electrically connecting the first and second electrodes to each other. The anisotropic conductive film includes a polymer binder resin, an epoxy resin, conductive particles, and a curing agent. The epoxy resin includes a naphthalene ring-containing epoxy resin and a dicyclopentadiene ring-containing epoxy resin. The naphthalene ring-containing epoxy resin is included in an amount of 100 parts by weight to 500 parts by weight based on 100 parts by weight of the dicyclopentadiene ring-containing epoxy resin.
Abstract:
The present invention relates to a horizontal thermoelectric tape and a method for manufacturing same, and more particularly, to a horizontal thermoelectric tape for an effective blocking of an electromagnetic wave and an excellent heat dissipation effect. The horizontal thermoelectric tape of the present invention unifies the double layer structure of an adhesion layer and a heat dissipation layer, more effectively achieving the heat dissipation effect, and simplifying the manufacturing process thereof, and by using a non-evaporated metal foil as a conductive base material, enables a horizontal thermoelectric tape having an excellent heat conductivity, and using a conductive base material not containing impurities.
Abstract:
The present invention provides a pressure-sensitive adhesive composition which can form a pressure-sensitive sheet excellent in adhesive properties (adherability, easy peeling property at the time of high speed peeling, and re-peeling property) and the antistatic property and which has long pot life. The pressure-sensitive composition of the present invention is a pressure-sensitive adhesive composition comprising a (meth)acryl-based polymer composed of, as raw material monomers, a (meth)acryl-based monomer having an alkyl group of 1 to 14 carbon atoms and a hydroxyl group-containing (meth)acryl-based monomer, an alkali metal salt, and a catalyst having iron as an active center, wherein the hydroxyl group-containing (meth)acryl-based monomer is contained in an amount of 6 parts by weight or more to 100 parts by weight of the (meth)acryl-based monomer having an alkyl group of 1 to 14 carbon atoms.
Abstract:
Provided are a pressure-sensitive adhesive composition for a touch panel, a conductive film, a touch panel and a pressure-sensitive adhesive film. The exemplary pressure-sensitive adhesive composition for a touch panel, the conductive film or the pressure-sensitive adhesive film has excellent durability and optical properties such as transparency. In addition, such physical properties are stably maintained under severe conditions. Particularly, a pressure-sensitive adhesive layer is attached to a conductor thin film, and thus resistance change of the conductor thin film is effectively inhibited even when the conductor thin film is exposed to the severe conditions. Therefore, the pressure-sensitive adhesive composition may be effectively used to manufacture a touch panel.
Abstract:
A semiconductor device bonded by an anisotropic conductive film, the anisotropic conductive film including a phenoxy resin including a fluorene-substituted phenoxy resin; and a radically polymerizable resin including a fluorene-substituted acrylate.
Abstract:
Provided is a pressure-sensitive adhesive layer for a transparent conductive film having a patterned transparent conductive thin film, which has transparent as the pressure-sensitive adhesive layer for transparent conductive film and can prevent the patterned transparent conductive thin film from degrading the appearance of the conductive film. A pressure-sensitive adhesive layer for a transparent conductive film having a patterned transparent conductive thin film, wherein the pressure-sensitive adhesive layer is made from an acrylic pressure-sensitive adhesive composition containing: 100 parts by weight of an acryl-based polymer obtained by polymerization of a monomer component including an alkyl(meth)acrylate; and 30 to 150 parts by weight of a styrene-based oligomer, the pressure-sensitive adhesive layer has a refractive index of 1.50 or more, the pressure-sensitive adhesive layer has a haze of 2% or less as measured at a thickness of 30 μm.
Abstract:
A conductive adhesive sheet includes a conductor layer including a projecting region that projects curvedly toward at least one side in the thickness direction; a low-melting-point metal layer that is formed on at least one surface in the thickness direction of the projecting region; and an adhesive layer formed on at least one surface in the thickness direction of the low-melting-point metal layer.
Abstract:
A thermally conductive sheet includes a mesh sheet and a thermally conductive composition containing a resin composition and a thermally conductive filler and coating both sides of the mesh sheet so as to form a thermally conductive layer. The thermally conductive sheet is prevented from trapping air bubbles so as to exhibit high thermal conductivity, and is so strong that does not easily tear. The mesh sheet has mesh holes defined by thread intersecting with each other. The intersection of the threads is provided with an bubble inclusion inhibition part for preventing air bubbles from being trapped in the interface between the thermally conductive composition and the mesh sheet. The bubble inclusion inhibition part may be a fused portion, a pressure-bonded portion or the like.
Abstract:
Release film furnished on at least one side with a release layer (c) based on at least one cured polysiloxane, the film comprising at least one inner layer (a) based on at least one thermoplastic polymer, equipped with at least one at least oligomeric compound having a long-term antistatic effect, as antistat, and at least one layer (b) based on at least one thermoplastic polymer; method for producing the release film, and the use thereof as a detachable protective or masking film.