Abstract:
The present invention is related to a process for obtaining organic ammonium salts (OAS) and their derivatives, supramolecular surfactants (SS), which simultaneously present the properties of traceability and detergents dispersant of organic scales. Organic ammonium salts (OAS) and their derivatives supramolecular surfactants (SS) have applications as differentiators, markers, or tracers in fuels derived from hydrocarbons; and also to disperse organic scales or inhibit the gums precipitation both in injectors and intake valves of automotive vehicle engines. Organic ammonium salts (OAS) are obtained through an acid-base reaction between a molecule from the azo family and an amine. Once the OAS is obtained, it reacts with an organic compound (OC) so that through non-covalent interactions, a self-assembly process occurs that gives rise to the SS. Said process is based on green chemistry, that is, in the absence of solvents. These OAS and SS are quantified through the analytical techniques of ultraviolet-visible (UV-VIS) and high-performance liquid chromatography (HPLC) through a calibration curve. Additionally, its performance as a gum-dispersing agent in a single-cylinder engine is evaluated.
Abstract:
Diheterocyclo diazene dicarboxamides have been found to effectively reduce the ignition delay and/or as effective cetane number improvers in diesel fuels and is suitable for use in modern engines.
Abstract:
A diesel fuel composition comprising, as an additive, the product of a Mannich reaction between: (a) an aldehyde; (b) an amine; and (c) a substituted phenol; wherein the phenol is substituted with at least one branched hydrocarbyl group having a molecular weight of between 200 and 3000; and wherein in the Mannich reaction used to form the additive the molar ratio of component (a) to component (b) is 2.2-1.01:1; the molar ratio of component (a) to component (c) is 1.99-1.01:1 and the molar ratio of component (b) to component (c) is 1:1.01-1.99.
Abstract:
The use of the reaction product formed from a hydrocarbyl-substituted dicarboxylic acid or anhydride thereof and a nitrogen compound I or a salt thereof as an additive in a fuel for reducing fuel consumption in gasoline engines.
Abstract:
A gasoline deposit control additive composition for use in a fuel comprising from about 70 to about 95 volume percent of hydrocarbons in the gasoline boiling range and from about 5 to about 30 volume percent of at least one alcohol, comprising the imine or tertiary amine product of the reaction between (a) at least one aldehyde or ketone or mixture thereof having the formula R16CHO, R16CH2CHO, R17(C=0)R18 or R17CH2(C=0)R18, wherein R16, R17, and R18 are the same or different and are each independently a straight or branched chain hydrocarbyl or aryl group that contains from 1 to 18 carbon atoms, and (b) a primary or secondary amine functionality.
Abstract:
A gasoline deposit control additive composition for use in a fuel comprising from about 70 to about 95 volume percent of hydrocarbons in the gasoline boiling range and from about 5 to about 30 volume percent of at least one alcohol, comprising the imine or tertiary amine product of the reaction between (a) at least one aldehyde or ketone or mixture thereof having the formula R16 CHO, R16 CH2 CHO, R17 (C=0) R18 or R17 CH2 (C=0) R18, wherein R16, R17, and R18 are the same or different and are each independently a straight or branched chain hydrocarbyl or aryl group that contains from 1 to 18 carbon atoms, and (b) a primary or secondary amine functionality.
Abstract:
The disclosure relates to a dye-stable furnace fuel composition comprising: about 10 to 99 parts by volume of a mineral oil component having an effective boiling range from about 160° C. to about 380° C.; about 1 to 90 parts by volume of a biocomponent fuel component comprising C1-C5 alkyl esterified fatty acids from renewable sources; one or more azo dye components present in an amount from about 0.5 mg/kg to about 5 mg/kg, relative to the total fuel composition; and a tert-butyl-functionalized hydroquinone antioxidant component present in an amount of at least about 50 vppm, relative to the fuel composition, wherein the fuel composition exhibits an increased dye stability, relative to a fuel composition having similar mineral oil and biocomponent fuel components and identical azo dye component(s), but having a different or no antioxidant component.