Abstract:
The present invention relates to the use of a fuel composition comprising at least 85% by weight of one or more hydrocarbon fractions consisting of one or more hydrotreated vegetable oils, said fraction(s) having a distillation range between 100 and 400° C. and having a paraffin content greater than or equal to 90% by weight, for reducing the deposits present in the internal parts of a compression ignition engine (or diesel engine). The present invention also relates to a method for cleaning the deposits present in the internal parts of a compression ignition engine using such a composition.
Abstract:
The use of tetrahydrobenzoxazines I where R1 is a hydrocarbyl radical and R2, R3, R4 and R5 are each independently hydrogen atoms, hydroxyl groups or hydrocarbyl radicals, and where R2 to R5 may also form a second and a third tetrahydrooxazine ring, with the proviso that at least one of the substituents has from 4 to 3000 carbon atoms and the remaining substituents, when they are hydrocarbyl radicals, each have from 1 to 20 carbon atoms, as stabilizers for stabilizing inanimate organic material, especially turbine fuels, against the action of light, oxygen and heat.
Abstract:
This disclosure relates to a composition for use as an additive for fuels and lubricants including a reductive amination product of a vinyl terminated macromonomer (VTM) based aldehyde. Optionally aldehyde is reacted with the amino compound under condensation conditions sufficient to give an imine intermediate, and the imine intermediate is reacted under hydrogenation conditions sufficient to give the composition. The aldehyde is formed by reacting a VTM under hydroformylation conditions sufficient to form the aldehyde. A reductive amination method for making a composition for use as an additive for fuels and lubricants. The method includes reacting a VTM based aldehyde with an amino compound containing at least one —NH— group under condensation conditions sufficient to give an imine intermediate, and reacting the imine intermediate under hydrogenation conditions sufficient to give said composition. The aldehyde is formed by reacting a VTM under hydroformylation conditions sufficient to form the aldehyde.
Abstract:
The use of tetrahydrobenzoxazines I where R1 is a hydrocarbyl radical and R2, R3, R4 and R5 are each independently hydrogen atoms, hydroxyl groups or hydrocarbyl radicals, and where R2 to R5 may also form a second and a third tetrahydrooxazine ring, with the proviso that at least one of the substituents has from 4 to 3000 carbon atoms and the remaining substituents, when they are hydrocarbyl radicals, each have from 1 to 20 carbon atoms, as stabilizers for stabilizing inanimate organic material, especially turbine fuels, against the action of light, oxygen and heat.
Abstract:
The use of tetrahydrobenzoxazines I where R1 is a hydrocarbyl radical and R2, R3, R4 and R5 are each independently hydrogen atoms, hydroxyl groups or hydrocarbyl radicals, and where R2 to R5 may also form a second and a third tetrahydrooxazine ring, with the proviso that at least one of the substituents has from 4 to 3000 carbon atoms and the remaining substituents, when they are hydrocarbyl radicals, each have from 1 to 20 carbon atoms, as stabilizers for stabilizing inanimate organic material, especially turbine fuels, against the action of light, oxygen and heat.
Abstract:
The use of tetrahydrobenzoxazines I where R1 is a hydrocarbyl radical and R2, R3, R4 and R5 are each independently hydrogen atoms, hydroxyl groups or hydrocarbyl radicals, and where R2 to R5 may also form a second and a third tetrahydrooxazine ring, with the proviso that at least one of the substituents has from 4 to 3000 carbon atoms and the remaining substituents, when they are hydrocarbyl radicals, each have from 1 to 20 carbon atoms, as stabilizers for stabilizing inanimate organic material, especially turbine fuels, against the action of light, oxygen and heat.
Abstract:
The use of tetrahydrobenzoxazines I where R1 is a hydrocarbyl radical and R2, R3, R4 and R5 are each independently hydrogen atoms, hydroxyl groups or hydrocarbyl radicals, and where R2 to R5 may also form a second and a third tetrahydrooxazine ring, with the proviso that at least one of the substituents has from 4 to 3000 carbon atoms and the remaining substituents, when they are hydrocarbyl radicals, each have from 1 to 20 carbon atoms, as stabilizers for stabilizing inanimate organic material, especially turbine fuels, against the action of light, oxygen and heat.
Abstract:
A method is described for reducing nitrogen oxides in the exhaust gas flow of combustion engines, especially a motor vehicle internal combustion engine, wherein an air/fuel mixture in the combustion chamber of the combustion engine is combusted in the presence of a fuel additive and, in the process, the fuel additive decomposes and the exhaust gas flow is guided through at least one catalyst arranged downstream of the combustion chamber. This method is characterized in that a fuel additive is used, which decomposes in the combustion chamber releasing ammonia and the exhaust gas flow containing ammonia is guided through at least one SCR catalyst arranged downstream of the combustion chamber to reduce the concentration of the nitrogen oxides contained therein. The method according to the invention is highly effective in reducing the nitrogen oxide content in the exhaust gas flow of a combustion engine without an exhaust gas aftertreatment system having to be expensively formed and the installation space having to be increased.
Abstract:
A diesel fuel additive composition, a fuel containing the fuel additive, a method for improving diesel engine performance using the additive. The diesel fuel additive includes a reaction product of (a) a hydrocarbyl-substituted acylating agent and (b) a reactant selected from the group consisting of a nitrogen-containing compound, a hydroxyl-containing compound, and water that provides a reaction product selected from the group consisting (1) a mono-amide/mono-acid or metal free mono-acid salt thereof, (2) a diacid or metal free diacid salt thereof, and (3) mono-ester/mono-acid or metal free mono-acid salt thereof. The reaction product includes at least about 10 molar percent acid groups based on total moles of the reaction product.
Abstract:
A method for scavenging sulfur species from a petroleum-derived medium is disclosed. The method comprises contacting the medium with sulfur species scavenging amount of an imine of the formula ##STR1## wherein x is an integer from 1 to 10, R' is an organic moiety having a number of valences equal to x, R.sub.1 is hydrogen or a mono-valent organic moieties and R is a mono-valent olefin moiety, provided that R and R.sub.1 contain a total of from about four to about forty carbon atoms. In an alternative embodiment, the imine is produced by a condensation reactionic between an amine having at least one primary amino group and a carbonyl of the formula ##STR2## wherein R.sub.1 is hydrogen or a mono-valent organic moieties and R is a mono-valent olefin moiety, provided that R and R.sub.1 contain a total of from about four to about forty carbon atoms. In yet other embodiments, the imine is produced by a condensation reaction between an amine having at least one primary amino group and an aldehyde having at least one alpha-hydrogen in an aldehyde to primary amino group molar ratio of at least about 2:1, are also disclosed.