Abstract:
The invention relates to lubricating grease compositions having a base oil mixture based on oils having viscosities (ISO VG 2 to ISO VG 1500) that are standard for industrial lubricants, an ionic liquid, a thickening agent, e.g., based on a polyurea compound and conventional additives that can be used at current service temperatures that are higher than 120° C. to 260° C., in particular at a service temperature in the region of high service temperatures that are higher than 180° C. to 260° C. and also at low temperatures as low as −60° C. The invention also relates to a method for producing said type of lubricating grease compositions.
Abstract:
A galling-resistant threaded tubular component for drilling or operating hydrocarbon wells includes at one of its ends a threaded zone produced on its external or internal peripheral surface depending on whether the threaded end is male or female in type, with at least one portion of the threaded zone being coated with a dry film with a crystalline structure with a high specific surface area principally constituted by one or more mineral salts which are not reactive towards metals, and a process for coating such a component using a dry mineral film with a crystalline structure having a high specific surface area principally constituted by one or more mineral salts which are not reactive towards metals.
Abstract:
A grease composition including: one or more mineral, synthetic or natural base oils, a thickener, at least one solid lubricant constituted by one or more transition metal chalcogenides with an inorganic fullerene structure, one or more organophosphorus and/or organophosphorus-sulphur anti-wear and/or extreme pressure additives. A grease composition as defined above is used in the constant velocity joints of the transmissions of motor vehicles. Constant velocity joints containing a grease as defined above are also provided.
Abstract:
There is provided a sliding member coating composition for forming a coating on the surface of a sliding member, which contains a binder resin, abrasion inhibiting members, and a solid lubricant as needed. The shape of the abrasion inhibiting members is a panel shape having an aspect ratio of 5 to 100 expressed by average particle diameter/average particle thickness, and has an average particle diameter of 15.0 μm or smaller and a Moh's hardness of 6 or higher. The content of the solid lubricant can be set to 0 to 15 parts by weight with respect to 100 parts by weight of the binder resin, and the content of the abrasion inhibiting members to 1 to 100 parts by weight with respect to 100 parts by weight of the binder resin. The solid lubricant may not be blended. The abrasion inhibiting members are preferably aluminas. According to the sliding member coating composition in the present invention, even when being exposed to severe frictional conditions for a long time, preferable lubricity can be guaranteed.
Abstract:
Disclosed is a refrigeration circuit-forming member which has a metal surface and is used for a refrigeration circuit in which HFO-1234yf that is a refrigerant configured of molecules having a double bond is used. The metal surface, which comes into contact with the HFO-1234yf, is covered with a coating layer that is not reactive with the HFO-1234yf within the range of temperature at which the HFO-1234yf is used. The coating layer is formed of any of a coating film that is firmly fixed to the metal surface, a coating layer that is formed by adhesion of a specific component added into the lubricant oil, and a coating layer that is formed by modification of the metal surface layer itself that forms the metal surface. Consequently, the chemical instability that is caused when the refrigerant HFO-1234yf comes into contact with the metal can be eliminated.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail tracks and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about 25% to about 70% by volume of a biopolymer polymeric carrier, about 5% to 75% percent by volume of organic and inorganic extreme pressure additives, about 0% to 20% by volume synthetic extreme pressure anti-wear liquid oil, and about 0% to 1% by volume optical brightener.
Abstract:
Disclosed is an electroconductive grease comprising a fluorine oil, an electroconductive material, and a thickening agent, the electroconductive grease containing 5 to 20 wt. % of carbon black having a DBP oil absorption amount of 250 ml/100 g or less as the electroconductive material, and 2 to 15 wt. % of fluorine-containing resin particles having an average primary particle size of 1.0 μm or less as the thickening agent. The electroconductive grease comprises carbon black having specific properties, and fluorine-containing resin particles, preferably PTFE particles, having an average primary particle size of 1.0 μm or less, and therefore exhibits excellent oil separation characteristics, namely, a remarkably lower degree of oil separation, which can also be reduced to 10 wt. % or less.
Abstract:
The present invention provides a friction control composition comprising a binder a rheological control agent, and optionally a lubricant. The liquid friction control composition may also comprise other components a wetting agent, a consistency modifier, and a preservative. The liquid friction control compositions may be used to modify the interfacial friction characteristics in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems. A method of reducing lateral force, reducing energy consumption, or controlling friction between a metal surface and a second metal surface by applying the composition to metal surface, for example a top of rail or wheel, is also provided. The composition may be sprayed onto the rail surface.
Abstract:
The invention relates to a method for preparing metal workpieces for cold forming by first applying a phosphate layer and then applying a lubricant layer which has a major content in organic polymer material. The phosphate layer is formed by an aqueous acidic phosphating solution having a major content in calcium, magnesium or manganese and phosphate. The lubricant layer is formed by contacting the phosphated surface with an aqueous lubricant composition which has a content in organic polymer material based on ionomer and optionally also non-ionomer the organic polymer material used predominantly being monomers, oligomers, co-oligomers, polymers or copolymers based on ionomer, acrylic acid/methacrylic acid, epoxide, ethylene, polyamide, propylene, styrene, urethane, the ester or salt thereof. The invention also relates to the corresponding lubricant composition, to the lubricant layer produced thereof and to its use.
Abstract:
A lubricant composition having improved lubricant properties, comprising:(a) a lubricating fluid; and (b) nano graphene platelets (NGPs) dispersed in the fluid, wherein nano graphene platelets have a proportion of 0.001% to 60% by weight based on the total weight of the fluid and the graphene platelets combined. Preferably, the composition comprises at least a single-layer graphene sheet. Preferably, the lubricating fluid contains a petroleum oil or synthetic oil and a dispersant or surfactant. With the addition of a thickener or a desired amount of NGPs, the lubricant becomes a grease composition. Compared with graphite nano particle- or carbon nanotube-modified lubricants, NGP-modified lubricants have much better thermal conductivity, friction-reducing capability, anti-wear performance, and viscosity stability.