Abstract:
A phase-sensitive interferometric broadband reflectometer includes an illumination source for generating an optical beam. A beam splitter or other optical element splits the optical beam into probe beam and reference beam portions. The probe beam is reflected by a subject under test and then rejoined with the reference beam. The combination of the two beams creates an interference pattern that may be modulated by changing the length of the path traveled by the probe or reference beams. The combined beam is received and analyzed by a spectrometer.
Abstract:
An interference spectroscopy instrument provides simultaneous measurement of specular scattering over multiple wavelengths and angles. The spectroscopy instrument includes an interference microscope illuminated by Koehler illumination and a video camera located to image the back focal plane of the microscope's objective lens while the path-length difference is varied between the reference and object paths. Multichannel Fourier analysis transforms the resultant intensity information into specular reflectivity data as a function of wavelength. This multitude of measured data provides a more sensitive scatterometry tool having superior performance in the measurement of small patterns on semiconductor devices and in measuring overlay on such devices.
Abstract:
A microscope comprising: a light sampler for collecting light from a measurement area of a sample; a multi-element detector having a plurality of photoelectric elements, for detecting the light collected by the light sampler, each photoelectric element corresponding to a minute measurement region in the measurement area with one-to-one correspondence; a Fourier transform spectrophotometer as a spectroscope; a data sampler for concurrently sampling intensity data sent from each photoelectric element of the multi-element detector at a timing determined by the Fourier transform spectrophotometer; and a data processor for obtaining time-resolved spectrum data for each minute measurement region according to temporally changed interference light data obtained by the data sampler.
Abstract:
The present invention relates to an apparatus and a method for optical spectroscopy and for optical sensory technology and to the use of the apparatus. An apparatus having high spectral resolution with simultaneously comparatively low demands on the quality of the optical components is provided in that the apparatus for optical spectroscopy comprises means for the generation of an interference pattern, means for the coupling of the incoming light field to be examined such that only one or several individual spatial modes of the field are permitted, and a detector which can record the intensity of the generated interference pattern at a plurality of spatially different positions, with the wavefronts and/or the propagation direction of at least one of the light fields involved in the interference pattern being changed by spectrally dispersive or diffractive optical elements in dependence on the wavelength. The present invention furthermore relates to a method of determining the optical spectrum and/or of other measurands encoded or transmitted by an optical spectrum by analysis of the interference pattern measured using an apparatus in accordance with the invention or using an apparatus in accordance with the invention.
Abstract:
In an imaging system providing an image of a target of interest, a method of reducing interference from a laser beam includes the steps of: (a) receiving optical energy from the target of interest and the laser beam; (b) forming an interferogram of spectral energy, at each spatial position of an image, based on the optical energy received in step (a); (c) detecting the interferogram of spectral energy, at each of the spatial positions, to provide a corresponding spectral band of intensity values; (d) selecting an intensity level in the spectral band, detected in step (c), that is greater than a predetermined value, and reducing the selected intensity level; and (e) forming an image of the target of interest, after reducing the selected intensity level of step (d).
Abstract:
A spectrometer and spectrometry method comprising modulating a light source with a carrier waveform multiplied by an envelope function, directing light from the light source through a sample region and to a photodetector, and demodulating current from the photodetector at a reference frequency. Also a method for computing a modulation waveform comprising specifying a target detection efficiency in a Fourier space, computing a response of a waveform that comprises a carrier wave multiplied by an envelope function, and modifying the envelope function using nonlinear optimization means to minimize a difference between the computed response and a predetermined target gain spectrum.
Abstract:
An electronically tuned, wavelength-dependent optical detector is provided. The electronically tuned, wavelength-dependent optical detector is a modified metal-semiconductor-metal photodetector including a comb-like metal electrode at a common voltage and metal electrodes each supplied with a control voltage by a voltage means. The wavelength to be detected in an optical input illuminating the detector is selected based on the set of control voltages applied to the metal electrodes. In another embodiment of the invention, the wavelength to be detected with the electronically tuned, wavelength-dependent optical detector is also selected using a standing wave generator, such as an interferometer, to produce a spatially varying light intensity on the surface of the electronically tuned, wavelength-dependent optical detector. Electronic wavelength demultiplexing is also provided. Design flexibility can be obtained by providing two or more optical patterns at a detector surface, each pattern having a different wavelength dependence.
Abstract:
An apparatus and method for an electronically tuned, wavelength-dependent optical detector are disclosed. The electronically tuned, wavelength-dependent optical detector is a modified metal-semiconductor-metal photodetector comprising a comb-like metal electrode at a common voltage and metal electrodes each supplied with a control voltage by a voltage means. The wavelength to be detected in a stream of light illuminating the electronically tuned, wavelength-dependent optical detector is selected based on the set of control voltages applied to the metal electrodes using the voltage means and the relative position of the electronically tuned, wavelength-dependent optical detector. In another embodiment of the invention, the wavelength to be detected with the electronically tuned, wavelength-dependent optical detector is also selected using a standing wave generator, such as an interferometer, to produce a spatially varying light intensity on the surface of the electronically tuned, wavelength-dependent optical detector.
Abstract:
A system for detecting and analyzing chemical and biological materials in a sample. The system includes a spectrometer for passively receiving emissions from the sample in the terahertz frequency band to detect the materials therein. A telescope or other device can be used to confine the field-of-view of the spectrometer. A cold surface is positioned filling the field-of-view of the spectrometer at an opposite side of the sample from the spectrometer. The cold surface provides a low temperature background relative to the sample so as to reduce the background emission and enhance the detection of the emission from the sample.
Abstract:
A fiber optic sensing device uses a Fabry-Perot cavity to sense a physical parameter. The cavity modulates the incident polychromatic light. The modulated light is recorded by an optical spectrometer means. The spectrum is analyzed in a signal processing unit which normalizes the spectrum and determines the phase of the modulated signal. The phase, accumulated over whole range of wavelengths, has been used for identification of the physical parameter using a look-up-table. The cavity, the polychromatic light source and the spectroscope means are connected by fiber optic means.