Abstract:
A method for real-time surface imperfection detection for additive manufacturing and 3-D printing parts is provided. The method includes directing a first light radiation using one or more illumination sources, wherein the first light radiation illuminates a target area of a part being manufactured in a uniform chromatic light such that the target area appears to have a substantially uniform monochromatic color; capturing a current image of a second light radiation that is scattered or reflected by the target area using one or more feedback cameras; and analyzing the current image of the second light radiation using at least one of the one or more feedback camera with a previously acquired image to determine whether a surface imperfection exists or does not exist.
Abstract:
An apparatus to detect optical flatness of an OLED display layer includes a light-emitting assembly, a light-receiving assembly, and an image processor. The light-emitting assembly includes a light source and a first enhancement element. The light source emits reference light through the first enhancement element. The first enhancement element enhances brightness of the reference light and guides the enhanced reference light to a display layer of a display device being detected. The light-receiving assembly receives light reflected by the display layer according to the reference light and generates an image thereof. The image processor receives the image and obtains a result of detection as to surface flatness of the display layer according to the image.
Abstract:
An instrument is provided that can monitor nucleic acid sequence amplification reactions, for example, PCR amplification of DNA and DNA fragments. The instrument includes a multi-notch filter disposed along one or both of an excitation beam path and an emission beam path. Methods are also provided for monitoring nucleic acid sequence amplifications using an instrument that includes a multi-notch filter disposed along a beam path.
Abstract:
A biosensing device, as well as methods of forming a biosensing device and detecting presence of a biofilm are disclosed. The biosensing device may include a substrate, at least one radiation source on the substrate, at least one radiation detector on the substrate, and at least one reflector arranged on the substrate such that radiation emitted from the at least one radiation source is reflected toward the at least one radiation detector. The at least one radiation detector may be configured to detect an intensity of the radiation reflected from the at least one reflector. A biofilm growth on a portion of the at least one reflector may cause a change in the intensity of the radiation reflected from the at least one reflector relative to radiation reflected from the reflector in the absence of the biofilm growth.
Abstract:
According to one embodiment, a sensor includes a light emitter and a light sensor. The light emitter includes a first electrode, a second electrode, and a first light emitting layer. The second electrode is light-transmissive. The first light emitting layer is provided between the first electrode and the second electrode. The light sensor includes a third electrode, a fourth electrode, a fifth electrode, a first photoelectric conversion layer, and a second photoelectric conversion layer. the fourth electrode is light-transmissive. The fifth electrode is provided between the third electrode and the fourth electrode. The fifth electrode is light-transmissive. The first photoelectric conversion layer is provided between the third electrode and the fifth electrode. The second photoelectric conversion layer is provided between the fourth electrode and the fifth electrode.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
Plasmonic condensers for generating surface plasmon at an evanescent wave surface can include a substrate layer, a metal layer comprising the evanescent wave surface; and a media layer disposed between the metal layer and the substrate layer. The media layer can be active or passive and can include a source of radiation that interacts with the metal layer to create surface plasmons that are not substantially optically detectable as far field radiation until an interfering object is brought into proximity with the evanescent wave surface. When an interfering object such as a sample or specimen is brought into proximity with the evanescent wave surface, it causes coupling of at least some of the surface plasmons into propagating radiation detectable by an objective lens. Systems, methods, and the like are disclosed, as are features of a plasmonic meta-materials illuminator.
Abstract:
An illumination device for an optical device, a microscope or a macroscope includes a first illumination source configured to emit light which is directed via an illumination beam path onto an object to be illuminated that is arranged in an object plane. At least one second illumination source is positionable in the illumination beam path, and is transparent or semitransparent as well as self-luminous. The at least one second illumination source is configured to allow light emitted from the first illumination source to pass through at least in part. The object plane having the object to be illuminated is configured to be illuminated both by the first and by the at least one second illumination source.
Abstract:
An apparatus and method are provided for differentiating multiple detectable signals by excitation wavelength. The apparatus can include a light source that can emit respective excitation light wavelengths or wavelength ranges towards a sample in a sample retaining region, for example, in a well. The sample can contain two or more detectable markers, for example, fluorescent dyes, each of which can be capable of generating increased detectable emissions when excited in the presence of a target component. The detectable markers can have excitation wavelength ranges and/or emission wavelength ranges that overlap with the ranges of the other detectable markers. A detector can be arranged for detecting an emission wavelength or wavelength range emitted from a first marker within the overlapping wavelength range of at least one of the other markers.