Abstract:
A sample analyzer includes (a) a measuring part for measuring optical information of a sample at first wavelength, second wavelength, and third wavelength, first light of the first wavelength and second light of the second wavelength being absorbed by a second substance but substantially not absorbed by a first substance, and third light of the third wavelength being absorbed by the first substance; and (b) an obtaining part for obtaining content of the first substance in the sample, and content of the second substance in the sample, influence by the second substance being excluded from the content of the first substance, based on the optical information at the first wavelength, second wavelength, and third wavelength measured by the measuring part.
Abstract:
The present invention is directed to solving the problems associated with the detection of surface defects on metal bars as well as the problems associated with applying metal flat inspection systems to metal bars for non-destructive surface defects detection. A specially designed imaging system, which is comprised of a computing unit, line lights and high data rate line scan cameras, is developed for the aforementioned purpose. The target application is the metal bars (1) that have a circumference/cross-section-area ratio equal to or smaller than 4.25 when the cross section area is unity for the given shape, (2) whose cross-sections are round, oval, or in the shape of a polygon, and (3) are manufactured by mechanically cross-section reduction processes. The said metal can be steel, stainless steel, aluminum, copper, bronze, titanium, nickel, and so forth, and/or their alloys. The said metal bars can be at the temperature when they are being manufactured. A removable cassette includes various mirrors. A protection tube isolates the moving metal bar from the line light assembly and image acquisition camera. A contaminant reduction mechanism applies a vacuum to remove airborne contaminants.
Abstract:
A microsphere-based analytic chemistry system and method for making the same is disclosed in which microspheres or particles carrying bioactive agents may be combined randomly or in ordered fashion and dispersed on a substrate to form an array while maintaining the ability to identify the location of bioactive agents and particles within the array using an optically interrogatable, optical signature encoding scheme. A wide variety of modified substrates may be employed which provide either discrete or non-discrete sites for accommodating the microspheres in either random or patterned distributions. The substrates may be constructed from a variety of materials to form either two-dimensional or three-dimensional configurations. In a preferred embodiment, a modified fiber optic bundle or array is employed as a substrate to produce a high density array. The disclosed system and method have utility for detecting target analytes and screening large libraries of bioactive agents.
Abstract:
An optical receiving and data communications system for sensing materials of interest (e.g., drugs and/or explosives) in transportation systems such as buses, trucks, cars, trains, aircraft, and ships, and checkpoints such as building entrances, roadblocks, passenger boarding areas, and the like. The system can be included in the transportation system, and includes a fiber optic frontend that focuses and/or concentrates light reflected from a target into the fiber filament for communication to an optical sensor. When the target is illuminated at a predetermined wavelength, a vapor plume and/or particulate matter associated therewith is energized such that change information is caused to occur and be received into the fiber system. The change information is communicated over a fiber communications network to a remote processing and analysis system for processing and analysis to determine its chemical components.
Abstract:
A method that redistributes light from a light source. The controller can redistribute light to make an irradiance profile of the light source more uniform or make the irradiance profile match a fluid flow profile. The irradiance profile may be controlled by modifying light leakage from a plurality of waveguides or changing the light-directing properties of reflectors and/or lenses.
Abstract:
A fluorescence illumination system is provided for use with an imaging apparatus that defines a light-tight imaging compartment. The fluorescence illumination system includes a trans-illumination component configured to direct excitation light into a first surface of the specimen wherein diffused light emanates from a second surface thereof for receipt through the view port to acquire fluorescence data of the specimen. Further, the fluorescence illumination system includes an epi-illumination component configured to direct excitation light onto a third surface of the specimen wherein the diffused light exits the third surface thereof for receipt through the view port to acquire fluorescence data of the specimen.
Abstract:
A thermal cycling device (3) device a number of fixed thermal zones (11, 12, 13) and a fixed conduit (10) passing through the thermal zones. A controller maintains each thermal zone including its section of conduit (10) at a constant temperature. A series of droplets flows through the conduit (10) so that each droplet is thermally cycled, and a detection system detects fluorescence from droplets at all of the thermal cycles. The conduit is in a single plane, and so a number of thermal cycling devices may be arranged together to achieve parallelism. The flow conduit comprises a channel (17) and a capillary tube (10) inserted into the channel. The detection system may perform scans along a direction to detect radiation from a plurality of cycles in a pass.
Abstract:
The present invention is directed to solving the problems associated with the detection of surface defects on metal bars as well as the problems associated with applying metal flat inspection systems to metal bars for non-destructive surface defects detection. A specially designed imaging system, which is comprised of a computing unit, line lights and high data rate line scan cameras, is developed for the aforementioned purpose. The target application is the metal bars (1) that have a circumference/cross-section-area ratio equal to or smaller than 4.25 when the cross section area is unity for the given shape, (2) whose cross-sections are round, oval, or in the shape of a polygon, and (3) are manufactured by mechanically cross-section reduction processes. The said metal can be steel, stainless steel, aluminum, copper, bronze, titanium, nickel, and so forth, and/or their alloys. The said metal bars can be at the temperature when they are being manufactured. A removable cassette includes various mirrors. A protection tube isolates the moving metal bar from the line light assembly and image acquisition camera. A contaminant reduction mechanism applies a vacuum to remove airborne contaminants.
Abstract:
A system and method for optical lymph node mapping. The system is useful for guiding sentinel lymph node biopsy surgeries. A contrast agent that includes a fluorescent dye is injected near the site of a malignancy. The contrast agent drains into the lymphatic system, collecting in a sentinel node or nodes. The system utilizes one or more low-power continuous-wave lasers or light-emitting diodes modulated with a digital code sequence to probe the tissue suspected of containing the sentinel node. When the light is incident near the sentinel node, it will excite fluorescence from the dye. A portion of the scattered fluorescent light is captured with one or more photo-detectors. A correlation of the photo-detector signal and the digital code sequence is calculated to produce an estimate of the distribution of flight times for photons traveling from a given source to a given detector. The flight time distributions are used along with the measured amplitudes to reconstruct a map of contrast agent location within the tissue.
Abstract:
System and method for detecting and measuring chemical perturbations in a sample. The system and method are useful for non-invasive pH monitoring of blood or blood products sealed in storage bags.