Abstract:
A process for making nanostructures on a support, including: supplying a support including a surface layer on one of its faces, covering the surface layer by a catalyst layer structured according to a pattern exposing areas of the surface layer covered by the catalyst and areas of the surface layer not covered by the catalyst, etching the thickness of the surface layer in the areas not covered by the catalyst layer, and selectively growing nanostructures on the areas of the surface layer covered by the catalyst. The process can also be used to make cathode structures with electrically independent nanostructures.
Abstract:
Novel uses of higher diamondoids are disclosed. Specifically, higher diamondoids may be used to nucleate diamond films and diamond-like carbon films. Such higher diamondoids include iso-tetramantane [1(2)3], anti-tetramantane [121], the two enantiomers of skew-tetramantane [123], the ten possible pentamantane, the thirty nine possible hexamantanes, the one hundred sixty heptamantanes, as well as the various octamantanes, nonamantanes, decamantanes, and undecamantanes.
Abstract:
Pathways to rapid and reliable fabrication of three-dimensional nanostructures are provided. Simple methods are described for the production of well-ordered, multilevel nanostructures. This is accomplished by patterning block copolymer templates with selective exposure to a radiation source. The resulting multi-scale lithographic template can be treated with post-fabrication steps to produce multilevel, three-dimensional, integrated nanoscale media, devices, and systems.
Abstract:
Disclosed is an emitter composition of a field emission cell that is printed on a cathode substrate of a display to be applied to an electron emission source, including a carbon nanotube, a binder, glass frit, a dispersing agent and an organic solvent, characterized by further having 0.1–20 w % of diamond. Further, a manufacturing method of the emitter composition and a field emission cell using the emitter composition are also provided. In the current invention, since the field emission cell has the carbon nanotube and the diamond distributed simultaneously therein, it has a relatively high current density even at the same driving voltage, thereby improving emitting properties. In addition, the field emission cell is advantageous in terms of superior printability and stable field emission, while reducing various expenses required to operate and repair constitutive parts thereof.
Abstract:
Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, low-k dielectric layers in integrated circuit multilevel interconnects, thermally conductive adhesive films, thermally conductive films in thermoelectric cooling devices, passivation films for integrated circuit devices (ICs), and field emission cathodes. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane. The diamondoid-containing material may be fabricated as a diamondoid-containing polymer, a diamondoid-containing sintered ceramic, a diamondoid ceramic composite, a CVD diamondoid film, a self-assembled diamondoid film, and a diamondoid-fullerene composite.
Abstract:
There is provided a method of manufacturing an electron emitting device by disposing a substrate with a catalytic metal film inside a reaction vessel; feeding hydrogen gas and hydrocarbon gas simultaneously into the reaction vessel at a temperature close to room temperature; raising the temperature inside the reaction vessel; and producing carbon fibers by keeping the temperature inside the reaction vessel substantially constant.
Abstract:
Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, low-k dielectric layers in integrated circuit multilevel interconnects, thermally conductive adhesive films, thermally conductive films in thermoelectric cooling devices, passivation films for integrated circuit devices (ICs), and field emission cathodes. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane. The diamondoid-containing material may be fabricated as a diamondoid-containing polymer, a diamondoid-containing sintered ceramic, a diamondoid ceramic composite, a CVD diamondoid film, a self-assembled diamondoid film, and a diamondoid-fullerene composite.
Abstract:
In a method of creating a field electron emission material, vanadium or a vanadium compound is disposed in respective locations of a substrate in order to create a plurality of emission site at said locations, at an average density of at least 10cm−2.Preferably, the vanadium or vanadium compound is in the form of particles.
Abstract:
Disclosed are an electron-emitting element having a large operating current at a low operating voltage and excellent operation stability, and an electron source, an image display device and the like utilizing such an electron-emitting element, and further a method of fabricating such an element with few process steps at low cost. A cold cathode member is configured utilizing hybrid particle of a first particle serving to emit electrons into the space and a second particle being in the vicinity of the first particle and serving to control the position of the first particle. In this configuration, it is preferable that the first particle have a higher electron emission efficiency than the second particle and that the second particle be conductive.
Abstract:
A novel field electron emitting device characterized in that a main portion of an electron emitting source for emitting electrons by an electric field is made of a carbon nanohorn. The field electron emitting device is high in electron emitting efficiency and excellent in productivity.