Abstract:
A method is for forming a wear resistant coating on a workpiece. The method includes atomizing a metallic liquid including molybdenum in an atmosphere to form a crystalline metallic powder including molybdenum. The crystalline metallic powder is milled to form a nanocrystalline metallic powder including molybdenum. Moreover, the method includes thermal spraying the nanocrystalline metallic powder including molybdenum onto the workpiece.
Abstract:
A method and apparatus for microplasma spray coating a portion of a turbine vane without masking any portions thereof. The apparatus includes a microplasma gun with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector injects powdered material into a plasma stream. A localized area of the turbine vane is coated with the powdered material without having to mask the turbine vane.
Abstract:
Disclosed herein is an erosion and corrosion resistant coating comprising a metallic binder, a plurality of hard particles, and a plurality of sacrificial particles. Also disclosed is a method of improving erosion and corrosion resistance of a metal component comprising disposing on a surface of the metal component the foregoing erosion and corrosion resistant coating comprising, and a metal component comprising a metal component surface and the foregoing erosion and corrosion resistant coating comprising a first surface and a second surface opposite the first surface, wherein the first surface is disposed on the metal component surface.
Abstract:
Aimed at providing an ion implantation apparatus elongated in period over which failure of a target work, due to deposition and release of ion species typically to and from the inner surface of a through-hole shaping a beam shape of ion beam, may be avoidable, reduced in frequency of exchange of an aperture component, and consequently improved in productivity, an aperture component shaping a beam shape has a taper opposed to the ion beam, in at least a part of inner surface of at least the through-hole, and has a thick thermal-sprayed film formed so as to cover the inner surface and therearound of the through-hole.
Abstract:
A refractory, oxidation-resistant, and corrosion-resistant protective coating for application to a substrate, in particular for application to parts of turbines or aircraft propulsion engines, is described, including a spray coating made of a thermally sprayed, primarily metallic material, the coating being at least partially subjected to a thermochemical aluminum (Cr, Si) deposition process having a specifically high aluminum deposition activity after the application of the protective coating to the substrate, in such a way that the protective coating has alloy gradients of Al (Cr, Si) which increase from the substrate surface to the coating surface and isolated globulitic metal oxide particles. Furthermore, a method for manufacturing this protective coating and its use are described.
Abstract:
By engineering thermal spray parameters, such as temperature and velocity, and engineering feedstock powder size and morphology, ceramic coatings may be produced having desired mechanical and thermal properties. The ceramic thermal spray coating may have a microstructure having about 10-80% by cross-sectional area of a particulate phase based on surface area of the coating, and the particulate phase is uniformly distributed throughout the coating. The particulate phase is an unmelted portion of the thermal sprayed feedstock, which is highly porous and may be produced by agglomerating nanoparticles of the ceramic. Such coatings can be applied as TBCs or as abradable coatings.
Abstract:
A process for forming curable powder comprises providing an aqueous dispersion of particles of curable resin and optionally particles comprising at least one curing agent; aggregating the particles optionally with the curing agent to form aggregated particles; coalescing the aggregated particles to form fused particles; and removing the fused particles from the aqueous dispersion. By the process, a curable powder is formed. The curable powder may be used in powder coating.
Abstract:
Corrosion resistant non-polar polymer coatings and method for applying the coatings to substrates is described, wherein a source of non-polar polymer powder is deposited as a coating onto the surface of a substrate by high temperature thermal spray, wherein the non-polar character of the powder and any additives thereto is substantially preserved during the high temperature thermal spray by using a mixture of a non-oxidizing shielding gas or reducing gas, or combination of the two, at one or more locations along the thermal spray to displace or react with ambient oxygen.
Abstract:
A two-step method to porcelain-coat an article is provided particularly useful for porcelain-coating a gas burner used in a gas-fired residential barbecue grill. A gas burner constructed from mild enameling-grade steel is dipped in a slip containing porcelain frit and manipulated so that the slip adequately coats and adheres to the interior surfaces of the burner. The porcelain-containing slip simultaneously coats and adheres to the peripheral "shoulders" and particularly to the interior "shoulders", of the gas jet openings of the burner. A second coating of porcelain-containing powder is then applied, for example, electrostatically or by other conventional powder application techniques, to the exterior surfaces of the burner. The properties of the porcelain-containing powder of the second coating are adjusted for optimal coating properties. Then, the double coated gas burner is fired in a continuous furnace at a peak firing temperature of 1480.degree. F. to 1550.degree. F., with a target of 1530.degree. F..+-.10.degree. F. for about ten minutes, which adequately bonds the porcelain to the steel gas burner.
Abstract:
A method of depositing a dielectric coating, comprising the steps of forming an unroughened or roughened, as-cast or wrought substrate surface to receive the coatings; and flame spraying a single premixed thermoplastic epoxy/hardener powder onto the surface, the resultant in-flight heated powder being chemically activated to impact the surface and form a chemically adhering coating, the coating being cured in-situ to be dielectric and thermally conductive.