Abstract:
This invention relates generally to a process for producing gasoline component. More particularly, the invention relates to a process for producing high octane gasoline component using renewable raw material as an additional feedstock. Further, the invention provides a gasoline fuel component having high biocontent obtainable from co-processing of vacuum gas oil and renewable feed stock material in a catalytic cracking unit.
Abstract:
The present disclosure relates to novel processes for making improved blends of hydrocarbon fuels that provide increased power and a broader operating range when used as fuel for homogeneous charge compression ignition engines.
Abstract:
Provided are a method and a device with which carbon dioxide is used as a starting material to yield methanol, without requiring high-temperature high-pressure conditions or the addition of hydrogen, and fuel hydrocarbons such as gas oil or heavy oil are produced in a satisfactory yield. The method is a method for increasing the amount of a hydrocarbon oil, characterized by: mixing methanol with water into which air has been bubbled in the presence of a catalyst; mixing the resultant liquid mixture with the feed hydrocarbon oil to produce an emulsion; and contacting this emulsion with a gas or aqueous solution which contains carbon dioxide.
Abstract:
A process for converting light paraffins to a high octane gasoline composition is disclosed. The process involves: (1) oxidation of iso-paraffins to alkyl hydroperoxides and alcohol; (2) conversion of the alkyl hydroperoxides and alcohol to dialkyl peroxides; and (3) radical coupling of iso-paraffins using the dialkyl peroxides as radical initiators, thereby forming gasoline-range molecules. Fractionation of the gasoline-range molecules can then be used to isolate high octane gasoline fractions having a road octane number [(RON+MON)/2] greater than 110.
Abstract:
An integrated process for converting low-value paraffinic materials to high octane gasoline and high-cetane diesel light is disclosed. The process involves: (1) oxidation of an iso-paraffin to alkyl hydroperoxide and alcohol; (2) converting the alkyl hydroperoxide and alcohol to dialkyl peroxide; (3) converting low-octane, paraffinic gasoline molecules using the dialkyl peroxides as radical initiators, thereby forming high-cetane diesel, while the dialkyl peroxide is converted to an alcohol; (4) converting the alcohol to an olefin; and (5) alkylating the olefin with iso-butane to form high-octane alkylate. The net reaction is thus conversion of iso-paraffin to high-octane gasoline alkylate, and conversion of low-octane paraffinic gasoline to high-cetane diesel.
Abstract:
In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass. Ketene and ketonization chemistry along with hydrogenation reactions are used to synthesize fuels and chemicals. In another embodiment, ketene used to form fuels and chemicals may be manufactured from acetic acid which in turn can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc.
Abstract:
The present invention provides an unleaded, piston engine fuel formulation comprising a blend of mesitylene, pseudocumene and isopentane having a MON of at least 94 and an RVP of 38 to 49 kPa at 37.8° C. In certain aspects, the formulation comprises specific weight percentages of each of the mesitylene, pseudocumene and isopentane components, and varying MON ratings. In additional aspects, the formulations comprise a combination of mesitylene, isopentane, and one or more additional components selected from the group consisting of pseudocumene, toluene and xylenes. In certain embodiments, the formulations also include alkylates and or alkanes. The formulations have unusually high MON ratings, and desirable RVP and distillation curve characteristics for formulations not including additional components, particularly octane boosters.
Abstract:
Systems relating to thermal activation (or cracking) of ethane to an intermediate, low purity raw ethylene stream in a first stage. The system then mixes this stream with a stream of raw biomass-derived ethanol that may contain more than four volume percent of water. The resulting mixture is reacted over a suitable catalyst at temperatures and pressures suitable to produce gasoline-range and diesel-range blend stock.
Abstract:
A method for producing a hydrocarbon material from a C5 raffinate which is obtained as an extracted residual oil after separating at least part of the isoprene by extraction distillation from a C5 fraction which is produced as a byproduct when thermally cracking naphtha to produce ethylene and has C5 organic compounds as main ingredients comprising, a gas-phase thermal cracking step of gasifying the C5 raffinate to thermally crack at least part of the C10 diolefins which are contained in the gasified C5 raffinate, a desulfurization step, after the gas-phase thermal cracking step, of removing at least part of the sulfur-containing ingredients which are contained in the gasified C5 raffinate after the gas-phase thermal cracking step in the gas-phase state, and a hydrogen addition step, after the desulfurization step, of hydrogenating at least part of the carbon-carbon double bonds of at least one selected from diolefins and olefins which are contained in the gasified C5 raffinate after the desulfurization step in the gas-phase state, so as to obtain a hydrocarbon material with a total concentration of diolefins and olefins of 0.5 wt % or less is provided.
Abstract:
A system and method are provided for in-line processes of blending butane into gasoline streams, and for blending butane into a gasoline stream at any point along a petroleum pipeline. The invention additionally provides a method for measuring the vapor pressure and vapor to liquid ratio of the gasoline, both upstream and downstream of the blending operation, as well as the sulfur content of the butane entering the blending operation. The blending operation can be controlled to ensure that the blended gasoline meets EPA requirements for vapor pressure and sulfur content of gasoline. The invention further provides a method for accessing and monitoring the operation off-site.