Abstract:
A method and a device employing the method of flow cytometry, preferably applicable but not limited to the counting and differentiation of leukocytes. It relates more particularly to the field of simplified haematology instruments with moderate operating costs. The method is characterized in that a technique of impedance measurement is used for identifying the particles whose trajectory did not pass through a predetermined optical measurement zone in order to process them selectively, thus avoiding the use of sheath fluids for guiding the particles towards the measurement zone.
Abstract:
There is provided an optical measuring device including: plural light-receiving units; a frame to which the respective light-receiving units are mounted on a same circumference whose axial center is a predetermined position, with optical axes of the light-receiving units being directed toward the axial center, an object of measurement being disposed at an axially central portion of the circumference; a measuring section that outputs measured values corresponding to received light amounts; a reference sample disposed, instead of the object of measurement, at the axially central portion of the circumference such that a longitudinal direction of the reference sample runs along an axis of the circumference; a reference light source that illuminates light of the predetermined wavelength toward the reference sample; and a calibrating section that calibrates the sensitivities of the plural light-receiving units at a time of measuring the object of measurement.
Abstract:
A compact, background-free, balanced cross-correlator enables (a) the detection of a timing error between two ultrashort pulses with (sub-)femtosecond resolution and (b) the timing synchronization of ultrashort pulse lasers using the output signal of the detector to close a phase-locked loop and can therefore serve as an integral part of femtosecond timing distribution and synchronization systems.
Abstract:
Embodiments of the invention include a target having a lattice of many periodically spaced and uniformly configured metrology features arranged in an array pattern over a target region. The lattice includes at least one defect region in the lattice, the defect region includes at least one intentionally introduced defect metrology feature. The defect feature configured to enable increased sensitivity of the target to a selected parameter of interest. The invention further encompassing associated methods of implementing the target and evaluating the parameter of interest.
Abstract:
A detection system and method for detecting an object such as a vessel or a cap on a vessel. The system includes an imaging device having a lens with a field of view for registering and processing an image of the object, an illumination device(s) for actively illuminating the object, a dark background portion, and an auxiliary light reflective area(s) for passively illuminating an edge portion of the object using reflections of illumination from the illumination device(s). The auxiliary light reflective area(s) is/are disposed adjacent to the dark background portion out of the field of view of the lens. Images of the object are subsequently compared to images of reference objects.
Abstract:
A method for evaluating three-dimensional (3-D) coordinate system measurement accuracy of an optical 3-D measuring system using targeted artifacts is provided. In this regard, an exemplary embodiment of a method for evaluating 3-D coordinate system measurement accuracy using targeted artifacts comprises: taking a series of measurements from different positions and orientations using target dots on a targeted artifact with an optical 3-D measuring system; and calculating measurement errors using the series of measurements. An exemplary embodiment of a targeted artifact used with the method includes a base and target dots located on the base.
Abstract:
Methods and apparatus, including computer program products, implementing and using techniques for collecting optical data pertaining to one or more characteristics of a sample. The apparatus has a light source, one or more illumination optical elements, a scanner, one or more collection optical elements, and a device forming an aperture that limits detection of light from the sample. The illumination optical elements direct a light beam from the light source onto the sample. The scanner scans the light beam across the sample. The collection optical elements collect light from the sample and transmit the collected light to a detector. None of the collection optical elements are included among the illumination optical elements. The device forming an aperture limits detection of light from the sample to light associated with a limited vertical depth within the sample, and is one of the collection optical elements.
Abstract:
The invention relates to an optical standard (10) for the calibration or characterization of optical measuring devices and as a reference system for intensities and intensity measurements. The standard (10) according to the invention, constructed sandwich-like, comprises a combination of at least two layer-like optical standard modules (12) having defined optical properties, joinable or joined together plane-parallel, wherein the standard modules (12) in each instance differ from each other by at least one optical property, namely, by their absorption, emission, scatter and/or reflection properties, and the standard modules (12) are made so that they enter into physical interaction with electromagnetic radiation striking one of their two principal surfaces (12.1).
Abstract:
A device includes a housing, illumination means, a reflective plate, and a detector. The housing defines an aperture. The illumination means is for providing illumination (natural or artificial) along an optical axis that passes through the aperture. The reflective plate is movable, relative to the housing, between a retracted and a deployed position. The positions are defined so that during such movement, the optical axis traces a line across the reflective plate. The detector is aligned to detect illumination from the illumination means after light through the aperture is reflected from the reflective plate. A method is also described. The device is particularly suitable for moving the reflective plate temporarily in front of a pushbroom or whisk broom type sensor for calibration because the line traces across a first portion of the diffusing surface that is subject to sunlight degradation and a second portion that is always shielded from sunlight.
Abstract:
A method for determining a test strip calibration code for use in a meter includes inserting a test strip into the meter. The inserted test strip having a substrate with a working surface for receiving the body fluid sample and a reverse surface that is in opposition to the working surface. The test strip also includes a permutative grey scale calibration pattern disposed on either of the working and reverse surfaces, with the permutative grey scale calibration pattern including more than one grey scale region. Moreover, the scale regions of the test strip define a grey scale permutation that uniquely corresponds to a calibration code of the test strip. The method also includes detecting the permutative grey scale calibration pattern with a grey scale photodetector module of the meter and determining a calibration code that uniquely corresponds to a grey scale permutation defined by the permutative grey scale calibration pattern based on permutation matrix stored in the meter.