Abstract:
A radiation source with an anode and a cathode to create a discharge in a discharge space between the anode and the cathode is disclosed. A plasma is formed in the radiation source which generates electromagnetic radiation, such as EUV radiation. The radiation source includes a first activation source to direct a first energy pulse onto a first spot in the radiation source near the discharge space to create a main plasma channel which triggers the discharge. The radiation source also has a second activation source to direct a second energy pulse onto a second spot in the radiation source near the discharge space to create an additional plasma channel. By directing the second energy pulse during the same discharge, a shortcutting of the main plasma current is realized which in turn may reduce the amount of fast ions produced.
Abstract:
A device for generating radiation source based on a discharge includes a cathode and an anode. A discharge is created in a material comprising an alloy of two or more substances.
Abstract:
A lithographic apparatus includes a radiation system including a radiation source for the production of a radiation beam, and a contaminant trap arranged in a path of the radiation beam. The contaminant trap includes a plurality of foils or plates defining channels which are arranged substantially parallel to the direction of propagation of said radiation beam. The foils or plates are oriented substantially radially with respect to an optical axis of the radiation beam. The contaminant trap is provided with a gas injector which is configured to inject gas at least at two different positions directly into at least one of the channels of the contaminant trap.
Abstract:
In a radiation source for the generation of short-wavelength radiation, it is the object of the invention to effectively increase the protection of the collimator optics by a buffer gas without substantially reducing the radiation transmission. A vacuum chamber which encloses a radiation-emitting plasma and is outfitted with at least one feed line and one outlet line for a buffer gas in order to ensure protection against debris for at least one optical element which directs the radiation to a radiation outlet opening in the vacuum chamber has chamber areas with particle deceleration of varying magnitude by the buffer gas. The particle deceleration is greater at least in a first chamber area in which the optical element is arranged than in any other chamber area.
Abstract:
In one aspect the plasma lamp according to the present invention comprises a gas envelope that is constructed from ceramic material and a sapphire window rather than quartz. According to another aspect of the present invention, a plasma lamp comprises an RF structure for the radio wave radiation and an envelope for housing the excitation gas that are formed so as to constitute a single, integrated ceramic structure. According to yet another aspect of the present invention, the plasma lamp comprises a waveguide structure having solid material such as ceramic rather than air for the dielectric and a gas housing made of a combination of solid ceramic and a sapphire window. In this way, the separate quartz gas envelope and air-filled waveguide structure employed in the prior art are replaced by a single, integrated structure.
Abstract:
A planar photoluminescent lamp includes a plurality of glass spacer beads affixed to a first glass plate, and a second glass plate in contact with the glass spacer beads. The glass plates are hermetically sealed to form a chamber, which is filled with a selected gas. Transparent electrodes are placed on the exterior of the first and second glass plates, over which electrically insulating layers are extended. First and second semi-transparent decorative layers are laid over the insulating layers, out of which light is transmitted. One or more transparent insulating layers extend over transparent electrodes placed on the exterior surface of the first and second glass plates.
Abstract:
A source of extreme ultraviolet or soft X-ray photon source includes discharge chamber containing a buffer gas, first and second electrodes in the discharge chamber configured to deliver a heating current to a plasma discharge region, and an injector to project a particle of a working substance into the plasma discharge region. The particle is evaporated and ionized by the heating current to form a hot plasma that radiates extreme ultraviolet or soft X-ray photons.
Abstract:
A flat lamp for emitting light to a surface area of a liquid crystal display device includes a bottom having a channel uniformly crossing an entire surface of the bottom, an arc-discharging gas is disposed within the channel, a cover disposed upon an upper junction surface of the bottom, the cover is coated with a fluorescent material, and an electric field generating means for generating an electric field, wherein the electric field generating means is placed along opposing lateral sides of the channel.
Abstract:
The invention relates to an improved method of production for a flat radiator discharge lamp designed for dielectrically impeded discharges, in which, during a filling step for the discharge vessel, a plate of the discharge vessel is jacked up on parts, later softening, of support elements in order to be lowered onto the other plate at a specific temperature. In this case, the support elements serve, in addition, to improve the mechanical stability of the finished flat radiator. According to the invention, only a small number of the support elements present in a relatively large number are used for the outlined function of holding up the plate.
Abstract:
The present invention relates to an ultraviolet ray generator 101, and the generator 101 has an ultraviolet ray lamp 1, a protective tube 2 being made of a material which is transparent with respect to ultraviolet ray and housing the ultraviolet ray lamp 1, and gas introduction port 6a introducing nitrogen gas or inert gas into the protective tube 2.