Abstract:
A biological tissue cutting and fluid aspiration system provides a plurality of surgical instruments operable independent of an external control console. In some embodiments, each surgical instrument may include all sensors and controls directly applicable to the surgical instrument, and may be used independently. In some embodiments, instruments communicate status information to each other, and adjust operating parameters based on the communications.
Abstract:
A surgical pack includes a platform having a plurality of recesses configured to function as a surgical tray. A plurality of surgical instruments are contained in a corresponding recess of the platform. The recess may have the shape of the surgical instrument that it is designed to receive. The recess may also include safety mechanisms to protect the tips of certain instruments and to lower the risk of injury caused by them. A packaging or covering holds the platform and the plurality of surgical instruments in a substantially sterile condition.
Abstract:
The present invention relates to thermoresponsive adhesives. The invention further relates to methods for the reversible attachment of retinal implants, other implants, and drug delivery devices.
Abstract:
Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, or cortical stimulation many purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced. With a thermoplastic polymer it may be further advantageous to repeatedly heat the flexible circuit in multiple molds, each with a decreasing radius. Further, it is advantageous to add material along the edges. It is further advantageous to provide a fold or twist in the flexible circuit array. Additional material may be added inside and outside the fold to promote a good seal with tissue.
Abstract:
The artificial percept of light may be created by electrically stimulating the neurons of the retina. While a photolithographed array internal to the retina provides superior resolution, an array external to the retina provides easier implantation and improved manufacturability. Therefore it is advantageous to supply a high-resolution electrode array internal to the sclera, near the fovea and a lower-resolution electrode array eternal to the sclera near the periphery of the retina. The preferred method of manufacturing a high-resolution electrode array is through photolithography, which requires the array to be made flat. While it is possible to curve the array afterward, it is difficult and costly. I small high-resolution array can be implanted near the fovea. Due to its small size, curvature is less of an issue. A larger lower-resolution array can be molded in silicone or similar method and placed around the periphery, of the retina, where the retina is naturally lower resolution. Further, the lower-resolution array can be implanted external to the sclera reducing the number of electrical connectors passing through the sclera. Even if a separate lower-resolution array is implanted internal to the sclera, super-choroidal (between the choroid and sclera) or intra-scleral (between the layers of the sclera), it is easier to make a lower-resolution array in a curved shape.
Abstract:
A method for training a visual prosthesis includes presenting a non-visual reference stimulus corresponding to a reference image to a visual prosthesis patient. The visual prosthesis including a plurality of electrodes. Training data sets are generated by presenting a series of stimulation patterns to the patient through the visual prosthesis. Each stimulation pattern in the series, after the first, is determined at least in part on a previous subjective patient selection of a preferred stimulation pattern among stimulation patterns previously presented in the series and a fitness function optimization algorithm. The presented stimulation patterns and the selections of the patient are stored and presented to a neural network off-line to determine a vision solution.
Abstract:
Microelectrode assemblies and related methods are disclosed for bio-stimulating and/or bio-sensing a target tissue. The assemblies can include a two-side substrate, an array of microelectrodes, each of the microelectrodes including a nano-wire embedded within the substrate and extending from a proximal end to a distal end and through the substrate, each nano-wire having a diameter preferably less than 1 μm. The substrate can include portions made of nano-porous material(s) through which the microelectrodes pass. The substrate with the embedded nano-wires can effectively be fluid impermeable. The proximal ends of the nano-wires can be adapted to be connected to an electronic device and the distal ends are adapted to be disposed in a biological environment for bio-stimulating a target tissue and/or bio-sensing activities of the target tissue. Suitable alloys such as platinum, platinum-iridium, and/or other noble-metal-alloyed compositions can be used for the nano-wires.
Abstract:
Featured are devices and methods for administering a therapeutic medium to the posterior segment of an eye including instilling or disposing the therapeutic medium sub-retinally. Such instillation is accomplished by providing a reservoir containing a therapeutic medium to which is fluidly coupled a cannula and inserting a portion of the cannula sub-retinally, whereby the therapeutic medium within the reservoir is coupled to and dispersed subretinally via the cannula.
Abstract:
Present invention is a method of improving circadian rhythms in blind people by stimulation the visual neural system. Ideally a retinal prosthesis of the type used to restore vision can be used to restore normal circadian rhythms. Additionally, brightness on the prosthesis can be increased in the morning and decreased in the evening to stimulate normal Circadian rhythms. Alternatively, if a retinal prosthesis is not preferable, the retina can be stimulated externally, during the day and not at night. While such eternal stimulation can not produced artificial vision, it can stimulate normal circadian rhythms.
Abstract:
A method for performing intraocular brachytherapy and an apparatus for performing the same is disclosed. The apparatus preferably comprises a hand-held delivery device that advances a radiation source into an associated cannula or probe that is positioned adjacent the target tissue. The handpiece provides for shielded storage of the radiation source when retracted from the cannula and includes a slider mechanism for advancing and retracting the radiation source. The radiation source is mounted to a wire that has a flexible distal end and a relatively stiffer proximal end. A positioning system for the cannula is also disclosed.