Abstract:
A gas laser apparatus may include: a laser chamber connected through a first control valve to a first laser gas supply source that supplies a first laser gas containing a halogen gas and connected through a second control valve to a second laser gas supply source that supplies a second laser gas having a lower halogen gas concentration than the first laser gas; a purification column that removes at least a part of the halogen gas and a halogen compound from at least a part of a gas exhausted from the laser chamber; a booster pump, connected through a third control valve to the laser chamber, which raises a pressure of a gas having passed through the purification column to a gas pressure that is higher than an operating gas pressure of the laser chamber; and a controller that calculates, on a basis of a first amount of a gas supplied from the booster pump through the third control valve to the laser chamber, a second amount of the first laser gas that is to be supplied to the laser chamber and controls the first control valve on a basis of a result of the calculation of the second amount.
Abstract:
An extreme ultraviolet light generation apparatus may include: a chamber; a target generation unit configured to output a target to a predetermined region inside the chamber; a focusing optical system configured to concentrate a pulse laser beam to the predetermined region; and a plurality of scattered light detectors each configured to detect scattered light from the target irradiated with the pulse laser beam. The extreme ultraviolet light generation apparatus may further include: an optical path changer configured to change an optical path of the pulse laser beam; and an optical path controller configured to control the optical path changer on a basis of results of detection by the plurality of scattered light detectors.
Abstract:
A system for generating extreme ultraviolet light may include a chamber, a target supply device configured to supply a target material into the chamber, a laser apparatus configured to output a laser beam to irradiate the target material, a wavefront adjuster configured to adjust a wavefront of the laser beam, an imaging optical system configured to focus the laser beam reflected by the target material, an image detector configured to capture an image of the laser beam focused by the imaging optical system, and a controller configured to control the wavefront adjuster based on the captured image.
Abstract:
A system for generating extreme ultraviolet light may include a chamber, a target supply device configured to supply a target material into the chamber, a laser apparatus configured to output a laser beam to irradiate the target material, a wavefront adjuster configured to adjust a wavefront of the laser beam, an imaging optical system configured to focus the laser beam reflected by the target material, an image detector configured to capture an image of the laser beam focused by the imaging optical system, and a controller configured to control the wavefront adjuster based on the captured image.
Abstract:
A device is provided for controlling a laser beam. The device may include a first wavefront adjuster provided in a beam path of a laser beam outputted from a laser apparatus, a beam delivery unit provided in a beam path of the laser beam from the first wavefront adjuster, a second wavefront adjuster provided in a beam path of the laser beam from the beam delivery unit, a beam monitor provided in a beam path of the laser beam from the second wavefront adjuster, and a controller configured to control the first and second wavefront adjusters based on a detection result of the beam monitor. An extreme ultraviolet light apparatus including the device is also provided.
Abstract:
A target supply device may include a reservoir configured to hold a target material in its interior in liquid form, a vibrating element configured to apply vibrations to the reservoir, a target sensor configured to detect droplets of the target material outputted from the reservoir, a control unit configured to set parameters based on a result of the detection performed by the target sensor, a function generator configured to generate an electrical signal having a waveform based on the parameters, and a power source configured to apply a driving voltage to the vibrating element in accordance with the electrical signal.
Abstract:
A mirror device may include: a mirror including a base plate, a reflective film on a first surface of the base plate, and a plurality of first protrusions on a second surface of the base plate; a plurality of support parts for respectively supporting the plurality of the first protrusions, each support part having a groove formed therein for guiding the first protrusion; and a plurality of clamps for respectively pressing the plurality of the first protrusions against the respective grooves in the plurality of the support parts.
Abstract:
A regenerative amplifier according to one aspect of this disclosure is used in combination with a laser device, and the regenerative amplifier may include: a pair of resonator mirrors constituting an optical resonator; a slab amplifier provided between the pair of the resonator mirrors for amplifying a laser beam with a predetermined wavelength outputted from the laser device; and an optical system disposed to configure a multipass optical path along which the laser beam is reciprocated inside the slab amplifier, the optical system transferring an optical image of the laser beam at a first position as an optical image of the laser beam at a second position.
Abstract:
An extreme ultraviolet light generation apparatus may include a chamber containing a plasma generation region irradiated by a pulse laser beam from a laser apparatus, a target supply device configured to supply a plurality of targets consecutively to the plasma generation region in the chamber, a target detection unit configured to detect a target outputted from the target supply device, and a laser controller configured to control the laser apparatus; the laser controller generating a light emission trigger instructing a laser device included in the laser apparatus to emit a pulse laser beam, and outputting the generated light emission trigger to the laser apparatus, in accordance with a detection signal from the target detection unit; and the laser controller adjusting generation of the light emission trigger outputted consecutively to the laser apparatus so that a time interval of the light emission trigger is within a predetermined range.
Abstract:
A laser apparatus may include an optical resonator, a laser chamber, an optical loss adjustment mechanism, and a spectral line width adjustment mechanism. The optical resonator includes a mirror configured to reflect a part of light and a grating. The laser chamber is provided in the optical resonator and contains a laser gain medium, configured to emit a laser beam. The optical loss adjustment mechanism is provided in the optical resonator and configured to adjust an optical loss of the laser beam. The spectral line width adjustment mechanism is provided in the optical resonator and configured to adjust a spectral line width of the laser beam.