Abstract:
A pressure sensor package includes a pressure sensor having a first side attached to a substrate and a second side opposite the first side, the first side having a pressure inlet aligned with an opening in the substrate, the second side having one or more electrical contacts. A logic die attached to an opposite side of the substrate as the pressure sensor is operable to process signals from the pressure sensor. First electrical conductors connect to the one or more electrical contacts of the pressure sensor. Second electrical conductors connect to one or more electrical contacts of the logic die. A mold compound completely encapsulates the second electrical conductors and at least partly encapsulates the logic die and the first electrical conductors. An open passage in the mold compound is aligned with the opening in the substrate so as to define a pressure port of the pressure sensor package.
Abstract:
A micromechanical semiconductor sensing device is disclosed. In an embodiment the sensing device includes a micromechanical sensing structure being configured to yield an electrical sensing signal, and a piezoresistive sensing device provided in the micromechanical sensing structure, the piezoresistive sensing device being arranged to sense a mechanical stress disturbing the electrical sensing signal and being configured to yield an electrical disturbance signal based on the sensed mechanical stress disturbing the electrical sensing signal.
Abstract:
A module and a method for manufacturing a module are disclosed. An embodiment of a module includes a first semiconductor device, a frame arranged on the first semiconductor device, the frame including a cavity, and a second semiconductor device arranged on the frame wherein the second semiconductor device seals the cavity.
Abstract:
A photoacoustic gas sensor device for analyzing gas includes an emitter module and a pressure-sensitive module. The emitter module is arranged on a carrier substrate and emits light pulses. The pressure-sensitive module is arranged on the carrier substrate within a reference gas volume. The reference gas volume is separated from a volume intended to be filled with a gas to be analyzed. Further, the pressure-sensitive module generates a sensor signal indicating information on an acoustic wave caused by light pulses emitted by the emitter module interacting with a reference gas within the reference gas volume. Additionally, the emitter module is arranged so that light pulses emitted by the emitter module reach the reference gas volume after crossing the volume intended to be filled with the gas to be analyzed.
Abstract:
A photo-acoustic gas sensor includes a light emitter unit having a light emitter configured to emit a beam of light pulses with a predetermined repetition frequency and a wavelength corresponding to an absorption band of a gas to be sensed, and a detector unit having a microphone. The light emitter unit is arranged so that the beam of light pulses traverses an area configured to accommodate the gas. The detector unit is arranged so that the microphone can receive a signal oscillating with the repetition frequency.
Abstract:
A sensor arrangement for sensing an environmental property of an environment of the sensor arrangement, the sensor arrangement comprising: a carrier; an active sensor component arranged at the carrier and configured for providing a sensor signal being indicative of the environmental property; a molding structure encapsulating at least a part of an exterior surface of the carrier and comprising an access recess exposing the active sensor component with regard to the environment; wherein the access recess is arranged asymmetrically with regard to the carrier.
Abstract:
An implantable vessel fluid sensor is configured to sense at least one vessel fluid parameter of a vessel. The implantable vessel fluid sensor includes a tubular body having a first end portion. The first end portion is configured to be inserted into and to form a sealed junction with an open vessel end of the vessel. The implantable vessel fluid sensor further includes a sensor unit connected to the tubular body. The sensor unit includes a sensor region configured to be in direct contact with the vessel fluid in a sealed junction state. A minimum distance between the sensor region and the first end portion is at most 10 times an outer diameter of the first end portion of the tubular body.
Abstract:
A microphone module includes a package including a semiconductor chip and having a recess on an upper surface and a micro-electro-mechanical microphone being electrically connected to the package. Further, the micro-electro-mechanical microphone is arranged on the upper surface of the package. The recess forms an acoustic back volume of the micro-electro-mechanical microphone.
Abstract:
Embodiments relate to integrated sonic sensors having a transmitter, a receiver and driver electronics integrated in a single, functional package. In one embodiment, a piezoelectric signal transmitter, a silicon microphone receiver and a controller/amplifier chip are concomitantly integrated in a semiconductor housing. The semiconductor housing, in embodiments, is functional in that at least a portion of the housing can comprise the piezoelectric element of the transmitter, with an inlet aperture opposite the silicon microphone receiver.
Abstract:
A sensor module includes an enclosure adapted to hermetically seal an opening or a hole on the outer surface of a casing or packaging, a sensor element and a membrane. The membrane is arranged between the enclosure and the opening or hole of the casing or packaging.