Abstract:
A sampling device and a gas curtain guide are disclosed. In one aspect, the sampling device includes a chamber body. The chamber body includes a sample inlet, located at a first end of the chamber body, configured for suction of a sample. The chamber body further includes a sample outlet, located adjacent to a second end opposite to the first end of the chamber body, configured to discharge the sample. The chamber body further includes a gas inflation inlet, in a wall of the chamber body, configured to introduce a swirl gas flow into the chamber body. The chamber body further includes a gas exhaust opening configured to discharge gas so as to, together with the gas inflation inlet, generate a tornado type gas flow in the chamber body, which moves spirally from the first end to the second end of the chamber body.
Abstract:
The present disclosure discloses a method and system for inspecting cargoes. The method comprises: acquiring a transmission image of the inspected cargoes; processing the transmission image to acquire an interested region; extracting features from the interested region, and determining cargo information of the inspected cargoes according to the extracted features; and providing a proposed treatment suggestion of the cargoes based on the determined cargo information and at least a part of information in a manifest. The above solution can facilitate an image judgment person to accurately judge whether the concerned cargoes are allowed to pass.
Abstract:
A method and an apparatus for estimating an image fuzziness are provided. The method may comprise: acquiring an image; obtaining a mufti-scale representation of the image by performing a mufti-scale transform on the image; calculating gradients of the image and a normalized histogram of the gradients at each scale based on the multi-scale representation; calculating error vectors between the normalized histogram of gradients at each scale and a normalized original histogram of gradients of the image; performing a weighted summing on the error vectors by using respective weights to obtain a summed result, wherein the weights are determined based on a reciprocal of the sums of squares of the gradients of the image at each scale; estimating the ambiguity of the image based on the summed result.
Abstract:
A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
Abstract:
The present disclosure is directed to a rapid process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics by using the combination of spark plasma primary sintering (SPS) and hot isostatic pressing secondary sintering.
Abstract:
An apparatus and method to generate distributed x-rays. A hot cathode of an electron gun is used in vacuum to generate electron beams having certain initial movement energy and speed. Periodic scanning is performed with the initial low-energy electron beams, which are thus caused to be reciprocally deflected. A current-limiting device is provided in the travel path of the electron beams along the direction of the reciprocal deflection. Through holes arranged in an array on the current-limiting device, only part of the electron beams targeting specific positions can pass to form sequential electron beam currents distributed in an array. These electron beam currents are accelerated by a high-voltage electric field to obtain high energy, bombard an anode target, and thus sequentially generate corresponding focus spots and x-rays distributed in an array at the anode target.
Abstract:
A x-ray apparatus of the present application comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged in a linear array and installed on the wall at one end within the vacuum box, each electron transmitting unit is independent to each other; the electron transmitting unit having: a heating filament; a cathode connected to the heating filament; a grid arranged above the cathode opposing the cathode; anode made of metal and installed at the other end of the vacuum box, and in the direction of length, the anode is parallel to the plane of the grid of the electron transmitting unit, and in the direction of width, the anode has a predetermined angle with respect to the plane of the grid of the electron transmitting unit.
Abstract:
The present application provides a curved surface array distributed x-ray apparatus, characterized in that, it comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged on the wall of the vacuum box in multiple rows along the direction of the axis of the curved surface in the curved surface facing the axis; an anode made of metal and arranged in the axis in the vacuum box which comprises an anode pipe and an anode target surface; a power supply and control system having a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of the electron transmitting units, a grid-controlled apparatus connected to each of the plurality of electron transmitting units, a control system for controlling each power supply.
Abstract:
The present invention discloses a gas analyzing apparatus and a sampling device. The gas analyzing apparatus includes a sampling device and an ion mobility spectrum analysis device. The sampling device includes a multi-capillary column and a temperature control system. The ion mobility spectrum analysis device is adapted for analyzing a gas leaded-in by the sampling device and includes a reaction cavity for reaction between sample molecules and reaction ions, the cavity having a sampling opening for leading-in of the gas. An outlet end of the multi-capillary column is inserted directly into the cavity of the ion mobility spectrum analysis device through the sampling opening of the ion mobility spectrum analysis device.
Abstract:
The present invention discloses a corona discharge assembly, an ion mobility spectrometer, an computer program and an computer readable storage medium. The corona discharge assembly includes: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and a trumpet-shaped front port which is conductive to forming a gathered electric field; multiple corona pins, in which on-off of a high voltage can be independently controlled, are installed at the center of the metal corona cylinder in an insulating manner. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly. The present invention can be used to prolong the service life of the integral corona discharge assembly; the discharge voltage of the ion source can be reduced and the discharge stability thereof can be improved; in comparison with the suspended installation of a pin-shaped electrode, since the multiple corona pins are fixed on the PCB, during installation, the position of the electrode can be accurate and stable, thus mass manufacture is easier to achieve.