Abstract:
An impregnated cathode structure has: (1) a sleeve having a truncated conically-shaped top portion with an opening having a predetermined diameter at the center thereof; (2) oxide cathode material formed within and conforming to the shape of the sleeve to form a point exposed through the opening; (3) a receiver forming part of said sleeve for retaining the oxide cathode material; (4) a backing plug which divides the inside of the sleeve so as to form a space for the receiver; and (5) a heater installed in the sleeve below the backing plug.
Abstract:
An improved cathode comprises a cone-shaped emitter with a carbon-based coating applied to the emitter cone surface, in which there is a narrow annular gap between the emitter body and the carbon coating. The gap prevents direct contact between the carbon coating and the crystalline emitting material, thereby preventing damaging interactions and extending the useful lifetime of the cathode.
Abstract:
A novel self-supporting flat display screen based on thermionic emission of indirectly heated cathode structures (23, 30, 31, 32, 34; 230, 32, 34) is provided utilizing micro-filament heaters (21) that can be interconnected in any predetermined manner. The planar micro-filament (21) construction utilizes Dewer and Dewer-like techniques (10, 11, 12, 13, 14, 15) for controlling the thermal energy emitted and lowering the power consumption of a display device. Several control electrode techniques (42, 52, 33, 133, 142) are also incorporated in the invention to reduce the voltage levels required to control the display and simplify the overall electronic control circuitry needed by the display device. These techniques are combined to provide a high intensity, high contrast flat panel display using low voltage off-the-shelf electronic driver circuitry.
Abstract:
A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.
Abstract:
The present disclosure relates to devices and methods for enhancing the collection of charge carriers, such as electrons. Methods of manufacturing the devices are also disclosed. An electronic device can include a cathode, an anode, a gate electrode, and a focus electrode. The cathode can include a cathode substrate and an emitting region that is configured to emit an electron flow. The anode can include an anode substrate and a collection region that is configured to receive and/or absorb the electron flow. The gate electrode can be receptive to a first power source to produce a voltage in the gate electrode that is positively-biased with respect to the cathode. The focus electrode can be receptive to a second power source to produce a voltage in the focus electrode that is negatively-biased with respect to the gate electrode and/or the cathode.
Abstract:
A method of manufacturing an article with integral active electronic component comprising: using an additive manufacturing process to: a) form a non-electrically conductive substrate; b) form a non-electrically conductive perforated layer having an aperture; c) form electrically conductive anode and cathode elements spaced in the aperture; d) deposit a conductive electrical connection to each of the elements suitable for imparting an electrical potential difference between the elements; e) form a non-electrically conductive sealing layer atop the perforated layer so as to retain and seal the aperture in the perforated layer.
Abstract:
A black matrix material for increasing resolution and contrast of field emission displays is disclosed. The black matrix material is preferably deposited by electrophoresis in the interstitial regions between phosphor pixels of the faceplate. By this technique, high resolution and/or small surface area field emission displays may be manufactured. The black matrix material does not brown when subjected to the conditions associated with the manufacture of field emission displays, is chemically inert and remains stable under vacuum conditions and electron bombardment. The black matrix material is selected from boron carbide, silicon carbide, tungsten carbide, vanadium carbide and mixtures thereof.
Abstract:
METHOD OF PRODUCING GASLESS, ELECTRON-EMISSIVE ALKALINEEARTH OXIDE COATED TUNGSTEN ELECTRODE, WHEREBY THE ELECTRODE IS ACTIVATED AND RENDERED CHEMICALLY STABLE PRIOR TO INCORPORATION INTO A DISCHARGE DEVICE BY HEATING THE TUNGSTEN ELECTRODE COATED WITH ALKALINE-EARTH METAL CARBONATE TO CONVERT THE CARBONATE TO THE OXIDE AND RENDER THE OXIDE AIR STABLE.
Abstract:
A method of manufacturing an article with integral active electronic component includes using an additive manufacturing process to: a) form a non-electrically conductive substrate; b) form a non-electrically conductive perforated layer having an aperture; c) form electrically conductive anode and cathode elements spaced in the aperture; d) deposit a conductive electrical connection to each of the elements suitable for imparting an electrical potential difference between the elements; and e) form a non-electrically conductive sealing layer atop the perforated layer so as to retain and seal the aperture in the perforated layer.
Abstract:
Described herein are methods and systems relating to an x-ray generation system. In some embodiments, the system includes an electron beam acceleration region that generates an electron beam and accelerates electrons in the beam and a radiation generation region that (i) receives the electron beam and (ii) generates an electric field having an energy of greater than about 10E7 V/m without electrical breakdown of vacuum gaps. The electric field is configured to decelerate electrons in the electron beam sufficiently to generate x-ray energy.