Abstract:
Disclosed is a mobile robot system having a plurality of exchangeable work modules, thereby providing a mobile robot capable of performing various functions at a low cost. The mobile robot system comprises a plurality of work modules, which perform different works, respectively; a module station for connecting the plurality of work modules; and a mobile robot, which selects and connects to one of the plurality of work modules from the module station according to a work task to be performed. The mobile robot autonomously operates to perform the work task.
Abstract:
An autonomous coverage robot includes a chassis, a drive system configured to maneuver the robot, and a cleaning assembly. The cleaning assembly includes a cleaning assembly housing and at least one driven sweeper brush. The robot includes a controller and a removable sweeper bin configured to receive debris agitated by the driven sweeper brush. The sweeper bin includes an emitter disposed on an interior surface of the bin and a receiver disposed remotely from the emitter on the interior surface of the bin and configured to receive an emitter signal. The emitter and the receiver are disposed such that a threshold level of accumulation of debris in the sweeper bin blocks the receiver from receiving emitter emissions. The robot includes a bin controller disposed in the sweeper bin and monitoring a detector signal and initiating a bin full routine upon determining a bin debris accumulation level requiring service.
Abstract:
A cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system configured to maneuver the robot as directed by a controller, and a cleaning assembly including a cleaning assembly housing and a driven cleaning roller. The robot maintenance station includes a station housing and a docking platform configured to support the robot when docked. A mechanical agitator engages the roller of the robot with the robot docked. The agitator includes an agitator comb having multiple teeth configured to remove accumulated debris from the roller as the agitator comb and roller are moved relative to one another. The robot maintenance station includes a collection bin arranged to receive and hold debris removed by the mechanical agitator.
Abstract:
A battery charging station, for a robot, includes a base, two side-walls barriers, a stop, a supporting arm, a charging connector, and a transmitter. The side-walls barriers are separately mounted on the base. The stop is mounted on the back of the base to form a docking space together with the barriers and the base. The supporting arm is mounted on the stop by one free end thereof with the other end extending into the space over the docking space. The charging connector is mounted on the free end of the supporting arm and is configured for providing an electrical connection between the robot and a power source. The transmitter is positioned on the upper surface of the supporting arm and is configured for emitting signals for the robot to locate the re battery charging station.
Abstract:
A robot cleaner includes a body to travel on a floor, an obstacle sensing unit to sense an obstacle approaching the body, an auxiliary cleaning unit mounted to a bottom of the body, to be extendable and retractable, and a control unit to control extension or retraction of the auxiliary cleaning unit when the obstacle is sensed. The control unit recognizes a zone of a charger and performs a control operation to prevent the auxiliary cleaning unit from extending in the charger zone.
Abstract:
A debris monitoring system includes a receptacle, a first and a second emitter, and a first receiver. The receptacle defines an opening to receive debris into the receptacle. The first and second emitter are each arranged to emit a signal across at least a portion of the opening. The first receiver is proximate to the first emitter to receive reflections of the signal emitted by the first emitter, and the first receiver is disposed toward the opening to receive an unreflected portion of the signal emitted by the second emitter across at least a portion of the opening.
Abstract:
A robot cleaner includes a main brush to sweep or scatter dust off a floor, a main brush motor to rotate the main brush, a Revolution Per Minute (RPM) detector to detect an RPM of the main brush motor, and a control unit to determine a type of floor according to the RPM of the main brush motor acquired by the RPM detector and control an operation of the robot cleaner based on the determined type of floor. A carpet mode to clean only a carpet area and a hard floor mode to clean a hard floor area excluding the carpet area are given based on detected information relating to the material of a floor, which enables partial cleaning with respect to a cleaning area selected by a user and adjustment in the number of cleaning operations or the intensity of cleaning according to the material of the floor.
Abstract:
A battery charger having a charging side at the body thereof for receiving and charging a mobile robotic vacuum cleaner is disclosed. The charging side has a groove, a sound wave transmitter mounted in the groove and a baffle mounted in the groove in front side of the sound wave transmitter for reflecting the sound wave transmitted by the ultrasonic transmitter toward two opposite lateral sides of the charging side along the groove to form two opposing sound wave beams to form two opposing sound wave beams for receiving by a sound wave receiver of the mobile robotic vacuum cleaner for determination of the steering direction. Subject to the guide of the sound wave beams, the mobile robotic vacuum cleaner is accurately guided to the battery charger and will not pass over or impact the battery charger.
Abstract:
A battery charging station, for a robot, includes a base, two side-walls barriers, a stop, a supporting arm, a charging connector, and a transmitter. The side-walls barriers are separately mounted on the base. The stop is mounted on the back of the base to form a docking space together with the barriers and the base. The supporting arm is cantilever mounted on the stop by one free end thereof with the other end extending into the space over the docking space. The charging connector is mounted on the free end of the supporting arm and is configured for providing an electrical connection between the robot and a power source. The transmitter is positioned on the upper surface of the supporting arm and is configured for emitting signals for the robot to locate the re battery charging station.
Abstract:
A method for energy management in a robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.