Abstract:
A cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system configured to maneuver the robot as directed by a controller, and a cleaning assembly including a cleaning assembly housing and a driven cleaning roller. The robot maintenance station includes a station housing and a docking platform configured to support the robot when docked. A mechanical agitator engages the roller of the robot with the robot docked. The agitator includes an agitator comb having multiple teeth configured to remove accumulated debris from the roller as the agitator comb and roller are moved relative to one another. The robot maintenance station includes a collection bin arranged to receive and hold debris removed by the mechanical agitator.
Abstract:
A system and method is disclosed for allocating multi-function resources among a plurality of tasks within a wetdeck process in semiconductor wafer fabrication. A resource allocator allocates multi-function resources among tasks within a process system that executes at least one application process. The resource allocator comprises a monitoring controller, model of the process system and a resource allocation controller. The monitoring controller monitors measurable characteristics associated with the executing application process, multi-function resources and tasks. The model represents the multi-function resources and the tasks, and defines relationships among them. The resource allocation controller operates the model in response to the monitored measurable characteristics and allocates ones of the multi-function resources among ones of the tasks to efficiently execute the wetdeck process of the semiconductor wafer fabrication process.
Abstract:
A semiconductor structure and methods for making it, for use in opto-electronic devices, employs only MOVPE growth steps. The structure is based on a mesa having substantially non-reentrant sides. To make it, an initial semiconductor structure is produced which comprises a substrate with a mesa thereon, the mesa having a self-aligned, central stripe of metal organic vapour phase growth suppressing material on its uppermost surface. Burying layers are then grown by MOVPE at either side of the mesa, the stripe removed, and covering layers grown over the mesa and adjoining regions of the burying layers. To make an opto-electronic device, a silica window can be formed on the uppermost surface of the covering layers and contacts provided through the window and to the remote face of the substrate. Two methods of making the initial semiconductor structure are described. Devices such as optical detectors and waveguides can be made using methods according to the invention. Particularly importantly, semiconductor lasers which will operate in a single transverse mode can be made.
Abstract:
The present invention relates generally to the maintenance of blow flood using drug eluting stents and/or other coated medical devices to increased length of time of blood flow. Further, the present invention relates to drug-releasing coated devices for reducing smooth muscle cell proliferation and platelet activity to further limit restenosis utilizing resveratrol and quercetin, polyphenols that are linked to the cardioprotection of red wine consumption. The present invention also provides products and methods for treating or preventing atherosclerosis, stenosis, restenosis, smooth muscle cell proliferation, platelet cell activation and other clotting mechanisms, occlusive disease, or other abnormal lumenal cellular proliferation condition in a location within the body of a patient.
Abstract:
A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
Abstract:
A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
Abstract:
A cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system configured to maneuver the robot as directed by a controller, and a cleaning assembly including a cleaning assembly housing and a driven cleaning roller. The robot maintenance station includes a station housing and a docking platform configured to support the robot when docked. A mechanical agitator engages the roller of the robot with the robot docked. The agitator includes an agitator comb having multiple teeth configured to remove accumulated debris from the roller as the agitator comb and roller are moved relative to one another. The robot maintenance station includes a collection bin arranged to receive and hold debris removed by the mechanical agitator.
Abstract:
A retractor for manipulating a vessel in a patient includes a working head shaped to define a working space in the tissue of a patient and at least a first manipulator for manipulating a vessel located proximate the working space, the first manipulator having a retracted position and an extended position. The first manipulator if disposed at least partially within the working space when the first manipulator is in the retracted position.
Abstract:
Pharmaceutical dosage unit compositions containing as an active ingredient a compound of the formula ##STR1## wherein R.sub.1 is hydrogen or lower alkyl, R.sub.2, R.sub.4 and R.sub.5, which may be identical to or different from each other, are each hydrogen, lower alkyl, hydroxyl, lower alkoxy, acyloxy, halogen, nitro or --SO.sub.3 H, andR.sub.3 and R.sub.6, which may be identical to or different from each other, are each hydrogen, lower alkyl, hydroxyl, lower alkoxy, acyloxy, halogen, nitro, --SO.sub.3 H, hydroxycarbonyl-methoxy, .beta.-hydroxy-ethoxy or .beta.-amino-ethoxy,Or a salt thereof; and a method of using the same as antiallergics.