Abstract:
The present invention relates to a reactor and to a process for synthesis of hydrogen sulphide from elemental sulphur and hydrogen at elevated pressure and elevated temperature. The invention further relates to the use of the reactor for preparation of hydrogen sulphide in high yield and with a low H2Sx content.
Abstract:
Recycled Nd—Fe—B sintered magnets. One of the recycled Nd—Fe—B sintered magnets includes a composition of WaRbAc, where waste material W comprises material from a waste Nd—Fe—B sintered magnet, rare earth material R comprises at least one of: Nd or Pr, and elemental additives A comprises at least one of: Nd, Pr, Dy, Co, Cu, or Fe, and indices a, b, and c indicate atomic percentages of the corresponding compositions or elements and the atomic percentages of the rare earth material R and the elemental additives A have values satisfying Nd[0.1-19 at. %*s(Nd), x]Pr[0.1-19 at. %*s(Pr), y]Dy[0.1-19 at. %*s(Dy), z]Co[0 at. %, d]Cu[0 at. %, e]Fe[0 at. %, f] where [m,n] means a range from minimum m and maximum n, s(t) is the atomic percent of element t in starting composition, x=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), y=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), z=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), d=3 at. %-[81,99.9] at. %*s(Co), e=0.3 at. %-[81,99.9] at. %*s(Cu), and f=77 at. %-[81,99.9] at. %*(s(Fe)+s(Co)).
Abstract:
The present invention relates to a reactor and to a process for synthesis of hydrogen sulphide from elemental sulphur and hydrogen at elevated pressure and elevated temperature. The invention further relates to the use of the reactor for preparation of hydrogen sulphide in high yield and with a low H2Sx content.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance. One of the methods includes demagnetizing magnetic material from a waste magnet assembly by cyclic heating and cooling of the magnetic material, fragmenting adhesives attached to the magnetic material, cracking coating layers of the magnetic material, and subjecting the magnetic material to at least one of: a) a mechanical treatment or b) a chemical treatment, to remove the coating layers and prepare the magnetic material without impurities, fragmenting the demagnetized magnetic material to form a powder, and mixing the powder with a rare earth material R and an elemental additive A to produce a homogeneous powder, wherein the rare earth material R comprises at least one of: Nd or Pr, and the elemental additive A comprises at least one of: Nd, Pr, Dy, Co, Cu, and Fe.
Abstract:
Described herein are processes and apparatus for the large-scale synthesis of boron nitride nanotubes (BNNTs) by induction-coupled plasma (ICP). A boron-containing feedstock may be heated by ICP in the presence of nitrogen gas at an elevated pressure, to form vaporized boron. The vaporized boron may be cooled to form boron droplets, such as nanodroplets. Cooling may take place using a condenser, for example. BNNTs may then form downstream and can be harvested.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance. One of the methods includes demagnetizing magnetic material from a waste magnet assembly by cyclic heating and cooling of the magnetic material, fragmenting adhesives attached to the magnetic material, cracking coating layers of the magnetic material, and subjecting the magnetic material to at least one of: a) a mechanical treatment or b) a chemical treatment, to remove the coating layers and prepare the magnetic material without impurities, fragmenting the demagnetized magnetic material to form a powder, and mixing the powder with a rare earth material R and an elemental additive A to produce a homogeneous powder, wherein the rare earth material R comprises at least one of: Nd or Pr, and the elemental additive A comprises at least one of: Nd, Pr, Dy, Co, Cu, and Fe.
Abstract:
Recycled Nd—Fe—B sintered magnets. One of the recycled Nd—Fe—B sintered magnets includes a composition of WaRbAc, where waste material W comprises material from a waste Nd—Fe—B sintered magnet, rare earth material R comprises at least one of: Nd or Pr, and elemental additives A comprises at least one of: Nd, Pr, Dy, Co, Cu, or Fe, and indices a, b, and c indicate atomic percentages of the corresponding compositions or elements and have values satisfying Nd[0.1-19 at. %*s(Nd), x]Pr[0.1-19 at. %*s(Pr),y]Dy[0.1-19%*s(Dy),z]Co[0,d]Cu[0,e]Fe[0,f] where [m, n] means a range from minimum m and maximum n, s(t) is the atomic percent of element t in starting composition; f(t) is the atomic percent of element t in final composition, x=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), y=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), z=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), d=3−[81, 99.9] at. %*s(Co), e=0.3−[81, 99.9] at. %*s(Cu), and f=77−[81, 99.9] at. %*(s(Fe)+s(Co)).
Abstract:
The invention provides a curing system that is useful for curing materials that consume carbon dioxide as a reagent. The system has a curing chamber that contains the material to be cured and a gas that contains carbon dioxide. The system includes apparatus that can deliver carbon dioxide to displace ambient air upon loading the system, that can provide carbon dioxide as it is needed and as it is consumed, that can control carbon dioxide concentration, temperature and humidity in the curing chamber during the curing cycle and that can record and display to a user the variables that occur during the curing process.
Abstract:
A system for producing hydrogen gas from water decomposition using a thermochemical CuCl cycle, the improvement comprising the use of an insulated hydrogen production reactor comprising a reaction chamber and a separation chamber; the reaction chamber having a hydrogen chloride gas inlet and a solid copper inlet; one or more levels provided in the reaction chamber, the number of which is dependant on production scale and pressure drop; each level comprising a perforated plate with associated filter media, the perforations of the plate and media being of decreasing size from top to bottom of the reaction chamber, and being sized to permit downward flow of the hydrogen gas and molten CuCl products, as well as the HCL gas reactant, and to prevent entrainment of solid copper in the molten CuCl; the separation chamber being located below the reaction chamber and being of greater cross section than the reaction chamber and comprising a first hydrogen removal and entrained copper removal zone and a second molten CuCl removal zone; removal of the reaction products being controlled so as to substantially decrease the amount of entrained copper in the molten CuCl; and the first zone having outlets for removal of hydrogen gas and entrained copper particles, with the second zone having an outlet for removal of molten CuCl.
Abstract:
A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.