Abstract:
An actuator is provided that includes a housing, a linear actuating shaft disposed within the housing, a piston coupled with the shaft, and a fluid barrier disposed on an end of the shaft and encircled by the piston. The piston is movable longitudinally between an extended configuration and a retracted configuration upon rotation of the shaft. The fluid barrier engages an inner surface of the piston preventing fluid communication across the fluid barrier. The fluid barrier has a shaft engaging side which receives the shaft and a fluid facing side. A cavity is formed between the piston and the fluid facing side and expands when the piston moves to the extended configuration and contracts when the piston moves to the retracted configuration. A port is disposed in the piston and extends from the cavity to external the piston thereby permitting fluid communication between the cavity and external the piston.
Abstract:
An on-line gas chromatography system for a fixed-bed continuous flow reactor and a method for on-line gas analysis of a catalytic reaction using the gas chromatography system. A reactor flow loop, a gas chromatogram, and a hydrostatic regulator are present in the gas chromatography system, wherein the reactor flow loop contains a fixed-bed reactor, a purge gas source, a feed gas source, and a by-pass line for reaction calibration.
Abstract:
The number of small gels that form in polyolefin thin films may be reduced by altering certain production parameters of the polyolefin. In some instances, the number of small gels may be influenced by the melt index of the polyolefin. However, in many instances, melt index is a critical part of the polyolefin product specification and, therefore, is not manipulated. Two parameters that may be manipulated to mitigate small gel count while maintaining the melt index are polyolefin residence time in the reactor and ICA concentration in the reactor.
Abstract:
This is a system for generating hydrogen on-board the vehicle from compressed natural gas (CNG) in select ratios to create hydrogen-enriched CNG (HCNG) fuel for use in internal combustion engines. The on-board generation of hydrogen is comprised of a reforming system of CNG fuel with direct contact with exhaust gases. The reforming system controls for production of HCNG fuel mixtures is based on specific engine operating conditions. The vehicle's engine controls and operating parameters are modified for combustion of selective ratios of HCNG fuel mixtures throughout engine operating cycle. The reforming system controls and engine controls modifications are also used to minimize combustion emissions and optimize engine performance.
Abstract:
Provided is a fuel reforming system that can convert gasoline into alcohol in a vehicle. Provided is a fuel reforming system (1) equipped with a reformer (15) having a reforming catalyst (152) that uses air to reform gasoline to produce alcohol, a mixer (14) which mixes gasoline and air and supplies the mixture to the reformer (15), and a condenser (16) which separates the gas produced in the reformer (15) into a gas phase and a condensed phase of which reformed fuel is the primary constituent; wherein the fuel reforming system (1) is characterized in that the reforming catalyst (152) is configured including a main catalyst for extracting hydrogen atoms from the hydrocarbons in the gasoline to produce alkyl radicals, and a catalytic promoter for reducing alkyl hydroperoxides produced from the alkyl radicals to produce alcohol.
Abstract:
A gas decomposition reactor for the decomposition of a gas into a mixture of solid and gaseous by-products is disclosed. The gas decomposition reactor includes a reactor vessel, a Raman spectrometer, and a processor. The reactor vessel has an inlet for receiving inlet gas and an exhaust outlet for releasing exhaust gas. The Raman spectrometer is connected with the exhaust outlet for determining a chemical conversion within the reactor chamber and generating a corresponding signal. The processor is connected with the Raman spectrometer to receive the signal from the Raman spectrometer. The processor is capable of comparing the signal with a set of values and calculating differences between the signal and the set of values. The processor is connected with the inlet to regulate a flow of the inlet gas.
Abstract:
A gas decomposition reactor for the decomposition of a gas into a mixture of solid and gaseous by-products is disclosed. The gas decomposition reactor includes a reactor vessel, a Raman spectrometer, and a processor. The reactor vessel has an inlet for receiving inlet gas and an exhaust outlet for releasing exhaust gas. The Raman spectrometer is connected with the exhaust outlet for determining a chemical conversion within the reactor chamber and generating a corresponding signal. The processor is connected with the Raman spectrometer to receive the signal from the Raman spectrometer. The processor is capable of comparing the signal with a set of values and calculating differences between the signal and the set of values. The processor is connected with the inlet to regulate a flow of the inlet gas.
Abstract:
A system and method for efficiently treating metal catalyst resident in a reactor vessel comprises a sulfiding module, a sulfur source, an ammonia source, and/or a coking source, a hydrogen sulfide detection module, a hydrogen gas detection module, a pH detection module, an ammonia gas detection module and a remote computer all arranged and configured to communicate wirelessly and to allow remote control and monitoring of the modules and process so that catalyst may be sulfided, passivated and/or soft-coked in situ.
Abstract:
Partial oxidation/steam reformers (222) which use heat integrated steam cycles and steam to carbon ratios of at least about 4:1 to enable efficient operation at high pressures suitable for hydrogen purification unit operation such as membrane separation (234) and pressure swing adsorption.
Abstract:
A system and method for efficiently treating metal catalyst resident in a reactor vessel comprises a sulfiding module, a sulfur source, an ammonia source, and/or a coking source, a hydrogen sulfide detection module, a hydrogen gas detection module, a pH detection module, an ammonia gas detection module and a remote computer all arranged and configured to communicate wirelessly and to allow remote control and monitoring of the modules and process so that catalyst may be sulfided, passivated and/or soft-coked in situ.