Abstract:
An air passage and two lines of cleaning liquid paths are provided in a nozzle, and the air passage is bifurcated into two lines of distal end portions. A secondary tank is provided upstream of the cleaning liquid paths. A distal end portion of a cleaning liquid path and the distal end portion of the air passage are merged. When a compressed air is supplied to the air passage, the resulting air flow makes the inside of the secondary tank to be negative pressure. Thus, the cleaning liquid can be made into the form of a mist, and is suctioned, and the cleaning liquid in the form of a mist and the compressed air are mixed, whereby it is possible to clean a lens surface and to reduce the amount of cleaning liquid used.
Abstract:
A cleaning apparatus is provided that includes a first nozzle configured to direct a cleaning jet towards a contaminated surface at a pressure sufficient to remove contaminants from the surface. At least one second nozzle is configured to direct a rinsing jet towards the contaminated surface to remove cleaning fluid therefrom, wherein the rinsing jet is directed at a pressure sufficient to isolate the cleaning jet from an ambient environment.
Abstract:
A self-contained, hand-held spray dispensing device includes an internal source of pressurized fluid that exerts a motive force on a pair of liquid ejecting elements to cause each to eject a liquid into a discharge line. The liquids remain separated until each exits its discharge port. A pressurized fluid is directed over the outlet ends of the discharge line beginning before a flow interrupter in the discharge line is opened to permit flow therethrough and ceasing after liquid flow is terminated. The pressurized fluid flow over the outlet of the discharge line aerosolizes liquids emanating from the outlet ends. Each liquid ejecting element takes the form of a piston disposed within a cylinder. The pistons responds to pressurized fluid imposed directly thereon from the source to generate the motive force on the ejecting element.
Abstract:
An applicator to be used with first and second liquid-containing syringes comprises an applicator main body for receiving the syringes, a gas flow path adapted to be connected to a gas supply for supplying a gas, a nozzle through which is discharged the gas and the liquids in the syringes, an operation part adapted to be pressed to operate pushers of the syringes, and an opening and closing mechanism in the operation part for shutting off/opening the gas flow path. The opening and closing mechanism is operable to open the gas flow path in synchronization with the pressing operation by the operation part.
Abstract:
An applicator to be used with first and second liquid-containing syringes comprises an applicator main body for receiving the syringes, a gas flow path adapted to be connected to a gas supply for supplying a gas, a nozzle through which is discharged the gas and the liquids in the syringes, an operation part adapted to be pressed to operate pushers of the syringes, and an opening and closing mechanism in the operation part for shutting off/opening the gas flow path. The opening and closing mechanism is operable to open the gas flow path in synchronization with the pressing operation by the operation part.
Abstract:
Liquid nebulizer apparatus, systems, and formulation compositions, as well as systems for the nebulized, aerosol delivery of such compositions, for the administration and insufflation of medicinal aerosols into the pulmonary system of a mammal are described. The nebulizing apparatus and system can effectively aerosolize a variety of viscosities of medicinal liquid drug carriers, including those made up of oil, water, or emulsions of oil and water. Drugs dissolved or suspended in the compositions and formulations described and adapted for use herein are not damages or denatured by the nebulization process when the nebulizer described is used. Further, the nebulization system itself can be adapted for use with both mechanically assisted pulmonary ventilation systems as well as hand-held inhalers and nose/mouth face masks for use in pulmonary drug delivery.
Abstract:
A spray nozzle comprises a cap 38 having an outlet orifice 41 formed therein for producing an atomised spray, the cap 38 having an outer surface 62, and further fluid outlet means 70 whereby a curtain of fluid can be directed over at least part of the outer surface 62.
Abstract:
Multi-component liquid spray system including a shim having a first array of first passages and a second array of second passages are described. When the shim is positioned between the first and second die portions of a housing, a first array of first liquid conduits and a second array of second liquid conduits are formed. The first array of first liquid conduits and second array of second liquid conduits are aligned such that at least one of the second liquid conduits is interspersed between successive first liquid conduits. Methods of making such spray systems and methods of using them to produce both multi-component sprays and coated articles are also described.
Abstract:
A non-contact fuel vaporizer adds heat to the injected fuel by combining the fuel with heated air in a vaporization chamber downstream of air supply inlets. The fuel is metered axially through a conventional fuel injector. The heated air is metered through an air director plate that introduces the air in a helical trajectory concentrically around the injector spray. When the hot swirling air comes in contact with the atomized fuel, substantially all of the fuel is vaporized before coming into contact with a wall of the vaporization chamber.
Abstract:
Disclosed herein is a nebulizer capable of performing spraying over a wide flow-rate range from a low flow rate to a high flow rate stably and with high efficiency. Further, the present invention provides a supersonic nebulizer capable of improving the efficiency of spraying by a supersonic region spray gas, and a supersonic array nebulizer wherein a plurality of spray units are placed in array form.