Abstract:
An object is to improve use efficiency of an evaporation material, to reduce manufacturing cost of a light-emitting device, and to reduce manufacturing time needed for a light-emitting device including a layer containing an organic compound. The pressure of a film formation chamber is reduced, a plate is rapidly heated by heat conduction or heat radiation by using a heat source, a material layer on a plate is vaporized in a short time to be evaporated to a substrate on which the material layer is to be formed (formation substrate), and then the material layer is formed on the formation substrate. The area of the plate that is heated rapidly is set to have the same size as the formation substrate and film formation on the formation substrate is completed by one application of heat.
Abstract:
An inventive substrate treatment method includes a silylation step of supplying a silylation agent to a substrate, and an etching step of supplying an etching agent to the substrate after the silylation step. The method may further include a repeating step of repeating a sequence cycle including the silylation step and the etching step a plurality of times. The cycle may further include a rinsing step of supplying a rinse liquid to the substrate after the etching step. The cycle may further include a UV irradiation step of irradiating the substrate with ultraviolet radiation after the etching step. The method may further include a pre-silylation or post-silylation UV irradiation step of irradiating the substrate with the ultraviolet radiation before or after the silylation step.
Abstract:
The invention relates to a painting system which comprises a painting device (121) in the painting chamber (103), said painting device comprising a casing (113) that surrounds the workpiece support (107) such that paint droplets that are not deposited onto the workpieces are dripped onto the casing to a large extent and can thus be reused.
Abstract:
Apparatus and methods of determining a position of a height sensor in a dispensing system. The dispensing system includes a dispenser, height sensor, camera, and a calibration device configured to receive a signal from the height sensor. The calibration device may include an optical sensor that generates an alignment signal in response to receiving light from the height sensor and/or a fiducial that causes the height sensor to generate the alignment signal in response to a detected height change. The alignment signal is used to automatically determine the position at which the height sensor is aligned with the calibration device. The position of the height sensor relative to a camera is determined by aligning the camera with the calibration device and recording its position. The recorded coordinates of the camera are compared to the coordinates of the height sensor when the height sensor is automatically aligned with the calibration device.
Abstract:
An apparatus is disclosed including a workspace for receiving a stent and a delivery device for the stent; a source for exposing the stent in the workspace to a plasticizing agent, vapor, or moisture, wherein the stent can be reduced in diameter in the workspace while under exposure of the plasticizing agent, vapor or moisture; and a device for reducing the diameter of the stent in the workspace to position the stent on or within the deliver device.
Abstract:
Several embodiments of semiconductor systems and associated methods of color corrections are disclosed herein. In one embodiment, a method for producing a light emitting diode (LED) includes forming an (LED) on a substrate, measuring a base emission characteristic of the formed LED, and selecting a phosphor based on the measured base emission characteristic of the formed LED such that a combined emission from the LED and the phosphor at least approximates white light. The method further includes introducing the selected phosphor onto the LED via, for example, inkjet printing.
Abstract:
A systems and method for reducing coating defects on a stent may involve a support apparatus comprising wire cage for carrying a stent. The support apparatus may have no structure that extends inside the stent. A support apparatus may include a plurality of wires that pass through the stent but do not pass through the midplane of the stent. A support apparatus may contact only the proximal ends of the stent. The method may involve keeping the stent in motion during a spray coating process to prevent the stent from having a point remain in continuous contact with a support apparatus.
Abstract:
A pen dispenser for dispensing flowable and non-flowable material, comprising a pen body and an optional push button applicator for the pen, a universal cartridge, optionally having a disposable cartridge, and capable of accepting a multitude of interchangeable tip applicators.
Abstract:
A systems and method for reducing coating defects on a stent may involve a support apparatus comprising wire cage for carrying a stent. The support apparatus may have no structure that extends inside the stent. A support apparatus may include a plurality of wires that pass through the stent but do not pass through the midplane of the stent. A support apparatus may contact only the proximal ends of the stent. The method may involve keeping the stent in motion during a spray coating process to prevent the stent from having a point remain in continuous contact with a support apparatus.
Abstract:
A wet processing apparatus for wet-processing substrates can suppress the reduction of throughput when some component part thereof becomes unserviceable. The wet processing apparatus includes a first nozzle unit and a second nozzle unit. When the wet processing apparatus operates in a normal mode, a substrate carrying mechanism is controlled so as to deliver substrates alternately to processing units of a first group and those of a second group so that the substrates are processed sequentially in order. When the processing units of the first group (the second group) are unserviceable due to the inoperativeness of the substrate holders, a processing liquid supply system or a nozzle support mechanism, the nozzle unit for the processing units of the second group (the first group) is moved to process substrates by the serviceable ones of the first group (the second group).