Abstract:
Methods of producing atomized intermetallic aluminide powders with a controlled oxygen content, and articles made from the powders by powder metallurgical techniques are disclosed. Gas atomized intermetallic aluminide powders can be oxidized to increase their oxygen content. Water atomized intermetallic aluminide powders can be milled to change their size, shape and/or oxygen content. Blends or mixtures of modified gas and water atomized intermetallic aluminide powders can be processed into articles by powder metallurgical techniques.
Abstract:
A process is disclosed for improving the corrosion resistance of stainless steel powders produced by atomization in an oxidizing atmosphere whereby silicon present in the powder tends to form silicon oxides on the powder surface. The process comprises adding an effective proportion of a modifier metal selected from the group consisting of antimony, arsenic, and bismuth to the melt prior to atomization. The modifier metal addition is effective for decreasing the surface silicon oxides and thereby improves the corrosion resistance.
Abstract:
A PREALLOYED IRON-COPPER POWDER WHICH HAS HIGH COMPRESSIBLIITY AND SHRINKS UPON SINTERING IS PREPARED BY MELTING A CHARGE OF IRON AND COPPER, ATOMIZING THE CHARGE WITH WATER JETS UNDER PRESSURE, FURTHER COMMINUTING THE PARTICLES IF DESIRED, AND SUBJECTING THE FORMED POWDER TO A HEAT TREATMENT BETWEEN 1400*F. AND 1800*F. IN A REDUCING ATMOSPHERE FOLLOWED BY A CONTROLLED COOLING.
Abstract:
IMPROVEMENT IN THE KNOWN PROCESS FOR PRODUCING POWDERED METAL BY ATOMIZING A MELT THEREOF WITH STEAM FOLLOWED BY SEPARATING THE POWDER FROM THE STEAM WHICH INCLUDES UTILIZING SUBSTANTIALLY DRY SUPER-HEATED STEAM FOR ATOMIZATION AND PROVIDING ALL SURFACES INTO WHICH THE STEAM COMES IN CONTACT AT A TEMPERATURE SUCH THAT SUBSTANTIALLY NO CONDENSATION OF THE STEAM OCCURS.
Abstract:
Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to unique powder feedstocks such as Tantalum, Yttrium Stabilized Zirconia, Aluminum, water atomized alloys, Rhenium, Tungsten, and Molybdenum. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
Abstract:
A production method for water-atomized metal powder includes: in a region in which the average temperature of a molten metal stream is higher than the melting point by 100° C. or more, spraying primary cooling water from a plurality of directions at a convergence angle of 10° to 25°, where the convergence angle is an angle between an impact direction on the molten metal stream of the primary cooling water from one direction and an impact direction on the molten metal stream of the primary cooling water from any other direction; and in a region in which 0.0004 seconds or more have passed after an impact of the primary cooling water and the average temperature of metal powder is the melting point or higher and (the melting point+50° C.) or lower, spraying secondary cooling water on the metal powder under conditions of an impact pressure of 10 MPa or more.
Abstract:
Disclosed herein are embodiments of methods, devices, and assemblies for processing feedstock materials using microwave plasma processing. Specifically, the feedstock materials disclosed herein pertains to unique powder feedstocks such as Tantalum, Yttrium Stabilized Zirconia, Aluminum, water atomized alloys, Rhenium, Tungsten, and Molybdenum. Microwave plasma processing can be used to spheroidize and remove contaminants. Advantageously, microwave plasma processed feedstock can be used in various applications such as additive manufacturing or powdered metallurgy (PM) applications that require high powder flowability.
Abstract:
There is provided a silver powder which has a small average particle diameter and a small thermal shrinkage percentage, and a method for producing the same. While a molten metal of silver heated to a temperature (1292 to 1692° C.), which is higher than the melting point (962° C.) of silver by 330 to 730° C., is allowed to drop, a high-pressure water is sprayed onto the molten metal of silver (preferably at a water pressure of 90 to 160 MPa) to rapidly cool and solidify the molten metal of silver to powderize silver to produce a silver powder which has an average particle diameter of 1 to 6 μm and a shrinkage percentage of not greater than 8% (preferably not greater than 7%) at 500° C., the product of the average particle diameter by the shrinkage percentage at 500° C. being 1 to 11 μm·% (preferably 1.5 to 10.5 μm·%).
Abstract:
A metal powder for powder metallurgy contains Co as a principal component, Cr at 16 mass % or more and 35 mass % or less, and Si at 0.3 mass % or more and 2.0 mass % or less, wherein when one element selected from Ti, V, Y, Zr, Nb, Hf, and Ta is a first element, and one element selected from the group and having a higher group number in the periodic table than that of the first element or having the same group number in the periodic table as that of the first element and a higher period number than that of the first element is a second element, the first element is at 0.01 mass % or more and 0.5 mass % or less, and the second element is at 0.01 mass % or more and 0.5 mass % or less.
Abstract:
The present invention provides iron powder for dust cores that has excellent compressibility and low iron loss after formation. In the iron powder for dust cores, Si content is 0.01 mass % or less, apparent density is 3.8 g/cm3 or more, the ratio of iron powder particles with a particle size of 45 μm or less is 10 mass % or less, the ratio of iron powder particles with a particle size of over 180 μm and 250 μm or less is less than 30 mass %, the ratio of iron powder particles with a particle size of over 250 μm is 10 mass % or less, and the Vickers hardness (test force: 0.245 N) of a powder cross-section is 80 Hv or less.