Abstract:
Various embodiments provide methods for controlling landings of a UAV in a landing zone including a plurality of landing bays. Various embodiments include a method implemented on a computing device for receiving continuous real-time sensor data from a transceiver and from sensors onboard the UAV, and detecting a target landing bay within the plurality of landing bays within the landing zone that is available for landing based on the continuous real-time sensor data. Orientation and position coordinates for landing in the target landing bay may be calculated based on the continuous real-time sensor data. Information regarding positions and flight vectors of a plurality of autonomous UAVs may be obtained, and a flight plan for landing in the target landing bay may be generated based on the orientation and the position coordinates, positions and flight vectors of the plurality of autonomous UAVs and a current orientation and position of the UAV.
Abstract:
A radio controlled (RC) vehicle includes a receiver that is coupled to receive an RF signal from a remote control device, the RF signal containing command data in accordance with a first coordinate system, wherein the first coordinate system is from a perspective of the remote control device. A motion sensing module generates motion data based on the motion of the RC vehicle. A processing module transforms the command data into control data in accordance with a second coordinate system, wherein the second coordinate system is from a perspective of the RC vehicle. A plurality of control devices control the motion of the RC vehicle based on the control data.
Abstract:
A system for detecting a particular occupancy status of multiple parking positions of a parking facility, which includes a parking occupancy sensor for detecting an occupancy status of a parking position, a displacement device for displacing the parking occupancy sensor along the parking positions, so that, due to a displacement of the parking occupancy sensor along the parking positions, the parking occupancy sensor is able to detect the particular occupancy status of the parking positions. A corresponding method, a corresponding parking facility for vehicles and a computer program are also described.
Abstract:
This camera unit (14) comprises a high-resolution rolling shutter camera (16) and one or several low-resolution global shutter cameras (18), for example monochromic spectral cameras. All the cameras are oriented in the same direction and are able to be triggered together to collect simultaneously a high-resolution image (I0) and at least one low-resolution image (I1-I4) of a same scene viewed by the drone. Image processing means (22) determine the distortions of the wobble type present in the high-resolution image and absent from the low-resolution images, and combine the high-resolution image (I0) and the low-resolution images (I1-I4) to deliver as an output a high-resolution image (I0) corrected for these distortions.
Abstract:
This disclosure is generally directed to an Unmanned Aerial Device (UAV) that uses a removable computing device for command and control. The UAV may include an airframe with rotors and an adjustable cradle to attach a computing device. The computing device, such as a smart phone, tablet, MP3 player, or the like, may provide the necessary avionics and computing equipment to control the UAV autonomously. For example, the adjustable cradle may be extended to fit a tablet or other large computing device, or retracted to fit a smart phone or other small computing device. Thus, the adjustable cradle may provide for the attachment and use of a plurality of different computing devices in conjunction with a single airframe. Additionally the UAV may comprise adjustable arms to assist in balancing the load of the different computing devices and/or additional equipment attached to the airframe.
Abstract:
Systems and methods for an automatically deployed wireless network are provided. According to one embodiment, an access point controller (AC) determines the existence of a network anomaly at a position of a wireless network that is managed by the AC. Responsive thereto, the AC causes an unmanned vehicle that carries a movable access point (AP) to carry the movable AP to the position or proximate thereto and causes the movable AP to provide wireless network service to an area encompassing the position by sending a dispatch command to the unmanned vehicle. The dispatch command instructs the unmanned vehicle to move to the position or proximate thereto.
Abstract:
A camera drone with a function of providing real-time captured images in a certain angle (e.g., vertical to the horizon) is disclosed. The camera drone includes multiple rotor wings, a support structure, a wireless transmitter, a controller, and a camera device. The camera device includes a processor, a gravity sensor, a gyroscope, and an image module. The image module is configured to capture an original image in a real time manner. The gravity sensor and the gyroscope are used to calculate a current dip angle (i.e., inclination of a geological plane down from the horizon) of the camera drone. The current dip angle is used to calculate an angle of rotation. The camera device then generates an edited image based on the original image and the angle of rotation.
Abstract:
An unmanned helicopter includes a drive source, a tail rotor, a shaft unit that transmits a drive force from the drive source to the tail rotor, and an elastic member. The shaft unit includes a drive shaft, a transmission which transmits a drive force from the drive source to the drive shaft, and a transmittal portion that transmits a rotation torque from the drive shaft to the tail rotor. The drive shaft includes a first shaft portion and a second shaft portion. The elastic member is located between the first shaft portion and the second shaft portion.
Abstract:
A method for constructing air-observed terrain data by using a rotary wing structure includes setting flight information including a photographing starting location and a photographing ending location on the basis of a flight route and a photographing location of the rotary wing structure; transmitting, to the rotary wing structure, the flight information so as to store the flight information in a flight control unit; capturing a ground image by a photographing unit of the rotary wing structure and storing the ground image in a storage unit when the rotary wing structure arrives at the photographing location; ending photographing and returning to the ground when the rotary wing structure arrives at the photographing ending location while repeatedly capturing a ground image; and constructing, by a computer in the control center, terrain data by using ground images stored in the storage unit.
Abstract:
Systems, methods, and devices are provided for providing flight response to flight-restricted regions. The location of an unmanned aerial vehicle (UAV) may be compared with a location of a flight-restricted region. If needed a flight-response measure may be taken by the UAV to prevent the UAV from flying in a no-fly zone. Different flight-response measures may be taken based on the distance between the UAV and the flight-restricted region and the rules of a jurisdiction within which the UAV falls.