Abstract:
Among other things, one or more techniques and/or systems are provided for providing users with access to a route for travelling. A user, of a client device, may send a request for access to the route to a route planning service. The route may correspond to a starting location and an ending location. The route planning service may query a route database to identify an entry indicating that a restricted access road segment (e.g., a high occupancy vehicle lane, a shoulder lane, a bus lane, etc.) and/or a road segment (e.g., comprising a traffic light alteration capability) exists between the starting location and the ending location. Responsive to successfully authorizing the user for travelling the restricted access road segment and/or the road segment, the route, comprising the restricted access road segment and/or the road segment, may be provided to the client device.
Abstract:
The present invention provides systems, methods, and devices related to target tracking by UAVs. The UAV may be configured to receive target information from a control terminal related to a target to be tracked by an imaging device coupled to the UAV. The target information may be used by the UAV to automatically track the target so as to maintain predetermined position and/or size of the target within one or more images captured by the imaging device. The control terminal may be configured to display images from the imaging device as well as allowing user input related to the target information.
Abstract:
An apparatus and method can be used with a remote vehicle such as an unmanned aviation system (UAS) or unmanned aviation vehicle (UAV). The system can be an apparatus including a camera, electronics, and a communication unit. The electronics provide a display image on a combiner. The camera is disposed to receive the display image from the combiner and provide a camera image. The communication unit provides data associated with the camera image from the camera to a remote location.
Abstract:
An unmanned aerial vehicle (UAV) can include one or more cameras for capturing image data within a field of view that depends in part upon the location and orientation of the UAV. At least a portion of the image data can be processed on the UAV to locate objects of interest, such as people or cars, and use that information to determine where to fly the drone in order to capture higher quality image data of those or other such objects. Once identified, the objects of interest can be counted, and the density, movement, location, and behavior of those objects identified. This can help to determine occurrences such as traffic congestion or unusual patterns of pedestrian movement, as well as to locate persons, fires, or other such objects. The data can also be analyzed by a remote system or service that has additional resources to provide more accurate results.
Abstract:
The present invention provides systems, methods, and devices related to target tracking by UAVs. The UAV may be configured to receive target information from a control terminal related to a target to be tracked by an imaging device coupled to the UAV. The target information may be used by the UAV to automatically track the target so as to maintain predetermined position and/or size of the target within one or more images captured by the imaging device. The control terminal may be configured to display images from the imaging device as well as allowing user input related to the target information.
Abstract:
An apparatus includes an image collection module that monitors at least one parameter to dynamically regulate an amount of data and resolution to be allocated to at least one object in a scene collected from an image data set. A situational awareness interface (SAI) renders a 3-D video of the scene to an operator based on the amount of data and resolution allocated from the image data set by the image collection module and receives operator commands for an unmanned vehicle (UV) that interacts with the scene.
Abstract:
A sensor senses an attribute of a worksite at a location that is geographically spaced from a corresponding mobile machine. An operation is performed at the location, based upon the sensed attribute. An action signal is generated based on the effect data. An unmanned aerial vehicle communicates effect data, indicative of an effect of the operation at the location, to the mobile machine. The action signal can be used to control worksite operations.
Abstract:
A control method for an unmanned aerial vehicle (UAV) is provided. The method includes: obtaining, from a depth-sensing camera, images of a surface below the unmanned aerial vehicle; obtaining, from a gyroscope, current pitch angle of the unmanned aerial vehicle; determining, at the unmanned aerial vehicle, a current altitude of the unmanned aerial vehicle based on the images and the current pitch angle; determining, at the unmanned aerial vehicle, whether the current altitude of the unmanned aerial vehicle is less than a predefined value; and controlling, at the unmanned aerial vehicle, a drive unit to rotate so as to cause the unmanned aerial vehicle to slow down in a balanced condition if the current altitude of the unmanned aerial vehicle is less than a predefined value.
Abstract:
An embodiment of an unmanned aerial vehicle, which may be connected to a lighter-than-air carrier, may have a ratio of a lifting force of the carrier to a weight of the vehicle from 1.1:1 to 3:1. The vehicle, excluding payload, may have a mass of from 30 kg to 150 kg. The vehicle may have a wingspan of from 20 m to 60 m.
Abstract:
Systems and methods using an Unmanned Aerial Vehicle (UAV) to perform physical functions on a cell tower at a cell site include flying the UAV at or near the cell site, wherein the UAV comprises one or more manipulable members; moving the one or more manipulable members when proximate to a location at the cell tower where the physical functions are performed to effectuate the physical functions; and utilizing one or more counterbalancing techniques during the moving ensuring a weight distribution of the UAV remains substantially the same.