Abstract:
A method of fabricating a device using a multi-layered wafer that has an embedded etch mask adapted to map a desired device structure onto an adjacent (poly)silicon layer. Due to the presence of the embedded mask, it becomes possible to delay the etching that forms the mapped structure in the (poly)silicon layer until a relatively late fabrication stage. As a result, flatness of the (poly)silicon layer is preserved for the deposition of any necessary over-layers, which substantially obviates the need for filling the voids created by the structure formation with silicon oxide.
Abstract:
A method of etching decoupled comb electrodes by self-alignment is provided The etching method is a self-alignment etching method for forming upper comb electrodes in a first silicon layer of a silicon on insulator (SOI) substrate and lower comb electrodes in a second silicon layer of the SOI substrate. The self-alignment etching method includes forming a first metal mask on the first silicon layer so as to cover portions of the first silicon layer where the upper comb electrodes are to be formed, forming a first photoresist (PR) mask on the first metal mask and portions of the first silicon layer corresponding to the lower comb electrodes, selectively etching the first silicon layer using the first PR mask as an etch barrier layer, selectively etching an insulating layer of the SOI substrate using the first PR mask as an etch barrier layer, selectively etching the second silicon layer of the SOI substrate using the first PR mask as an etch barrier layer, forming a second PR mask on portions of the second silicon layer corresponding to the upper comb electrodes, forming a second metal mask entirely on an exposed bottom surface of the second silicon layer including the second PR mask, removing the first and second PR masks, and etching the first and second silicon layers using the remaining first and second metal masks so as to form the upper comb electrodes and the lower comb electrodes.
Abstract:
A selective etching method with lateral protection function is provided. The steps includes: (a) providing a substrate; (b) forming a plurality of tunnels; (c) forming a lateral strengthening structure at a peripheral wall of the tunnels; (d) removing a bottom portion of the lateral strengthening structure, and a part of the substrate by an etching process so as to form a lower structure and expose an unstrengthened structure; and (f) etching the unstrengthened structure laterally so as to form an upper structure.
Abstract:
A micro-electro-mechanical component comprising a movable element with comb electrodes, and two stationary elements with comb electrodes aligned and stacked on each other but electrically insulated by a layer of insulation material. The movable element is supported by multiple torsional hinges and suspended over a cavity such that the element can oscillate about an axis defined by the hinges. The comb electrodes of the movable element are interdigitated with the comb electrodes of one stationary element in the same plane to form an in-plane comb actuator. The comb electrodes of the movable element are also interdigitated in an elevated plane with the comb electrodes of another stationary element to form a vertical comb actuator. As a result, the micro-electro-mechanical component is both an in-plane actuator and a vertical comb actuator, or a multiple-plane actuator. Methods of fabricating such actuator are also described.
Abstract:
A method is for manufacturing a microstructure having a thin-walled portion with use of a material substrate. The material substrate has a laminated structure which includes a first conductor layer 101, a second conductor layer 102, a third conductor layer 103, a first insulating layer 104 interposed between the first conductor layer and the second conductor layer, and a second insulating layer 105 interposed between the second conductor layer and the third conductor layer. The first insulating layer is patterned to have a first masking part for covering a thin-wall forming region of the second conductor layer. The second insulating layer is patterned to have a second masking part for covering the thin-wall forming region of the second conductor layer. The method includes forming the thin-walled portion in the second conductor portion by etching the material substrate from the first conductor layer down to the second insulating layer via a mask pattern 58 including a non-masking region corresponding to the thin-wall forming region of the second conductor layer.
Abstract:
A MEMS device which utilizes a capacitive sensor or actuator is enhancement by initially fabricating the capacitive assembly which comprises the sensor or actuator as two sets of interdigitated fingers in a noninterdigitated configuration. One of the two sets of fingers is coupled to a movable stage. The stage is moved from an initial position to a post-release position in which the two sets of interdigitated fingers are interdigitated with each other. The stage is carried by two pairs flexures which maintain the stability of motion of the stage and when in the post-release position provide stiffness which prevents deflection of the set of fingers coupled to the stage. The stage and hence the assembled sets of fingers are then locked into the post-release position.
Abstract:
The present invention is related to a novel micro-electro-mechanical systems (MEMS) torsional drive that is capable of tilting suspended structure such as a micro-mirror for steering light beams in three-dimensional analog fashion, which is suitable for high port count optical switches. The torsional drive has the advantages of allowing large tilt angle, having low drive voltage, and capable of providing a feedback signal for closed-loop control.
Abstract:
A micro-electro-mechanical system (MEMS) mirror device includes an mirror, bonding pads, springs, and beams connected to the mirror. The mirror has a width greater than 1000 and less than 1200 microns, a length greater than 4000 and less than 5500 microns, and a thickness greater than 240 microns. Each beam includes a plurality of rotational comb teeth and is connected by multiple springs to the bonding pads.
Abstract:
A microelectromechanical system (MEMS) comb actuator materialized in an insulating material and a manufacturing method thereof are provided. The MEMS comb actuator includes a stationary comb fixed to a substrate; a movable comb separated from the substrate; a post fixed to the substrate; and a spring connected to the post to be separated from the substrate so as to movably support the movable comb. The stationary comb, the movable comb, the post, and the spring are formed in an insulating material layer formed on the substrate, and a metal coating layer is formed at least on the surface of the stationary comb and the movable comb. The method includes preparing a substrate; forming an insulating material layer on the substrate using silica or polymer; and selectively etching the insulating material layer and the substrate, thereby forming a stationary comb, a movable comb, a post, and a spring in the insulating material layer, and forming a metal coating layer on the surfaces of the stationary comb and the movable comb.
Abstract:
A micromachined structure having electrically isolated components is formed by thermomigrating a dopant through a substrate to form a doped region within the substrate. The doped region separates two portions of the substrate. The dopant is selected such that the doped region electrically isolates the two portions of the substrate from each other via junction isolation.