Abstract:
An inductive coil assembly having multiple coils arranged at distinct orientations to provide efficient inductive coupling of power or communications or both to a device when the device is arranged at different orientations with respect to the inductive primary coil. In one embodiment, the inductive coil assembly includes three coils, each oriented along one of the x, y and z axes of a standard Cartesian three-dimensional coordinate system. The three separate coils provide effective transfer of power and communication when the device is at essentially any orientation with respect to the primary coil. In an alternative embodiment, the multi-axis inductive coil assembly of the present invention can function as a primary to inductively transmit power or communication or both over a plurality of magnetic fields at distinct orientations.
Abstract:
A lamp assembly configured to inductively receive power from a primary coil. The inductively powered lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the inductively powered lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Abstract:
A ballast circuit is disclosed for inductively providing power to a load. The ballast circuit includes an oscillator, a driver, a switching circuit, a resonant tank circuit and a current sensing circuit. The current sensing circuit provides a current feedback signal to the oscillator that is representative of the current in the resonant tank circuit. The current feedback signal drives the frequency of the ballast circuit causing the ballast circuit to seek resonance. The ballast circuit preferably includes a current limit circuit that is inductively coupled to the resonant tank circuit. The current limit circuit disables the ballast circuit when the current in the ballast circuit exceeds a predetermined threshold or falls outside a predetermined range.
Abstract:
A disinfection reactor for disinfecting liquid, such as water from a water filtration plant, by exposing the liquid to ultraviolet light. The reactor includes a generally rectangular reactor vessel and two or more medium pressure ultraviolet lamps that extend within the reactor vessel in a direction transverse to the direction of liquid flow therethrough. The reactor vessel includes liquid guide surfaces that guide liquid to flow in a converging flow path having a reduced-area flow region in the vicinity of the ultraviolet lamps. The ultraviolet lamps are positioned spaced from and between the guide surfaces.
Abstract:
A apparatus for supplying drinking-water has a drinking-water storage unit, a drinking-water supply system capable of introducing the drinking-water into a drinking cup from the drinking-water storage unit, and an antimicrobial member provided in the drinking-water supply system. This allows easy bacteriostasis or sterilization of the drinking-water poured from the nozzle. Further, an activity effect of the antimicrobial member inhibits the growth of bacteria in the drinking-water supply system.
Abstract:
A process for treating an aqueous liquid. The process includes: passing the liquid by force of gravity through a treatment area, the liquid having an upper surface exposed to ambient pressure; disrupting the flow of the liquid as it passes through the treatment area, and exposing the upper surface of the liquid as the flow is disrupted to UV light. Disrupting the flow includes directing lower portions of the liquid toward the surface of the liquid to bring such portions into contact with UV light. A process for treating an aqueous liquid in which the treatment process is monitored. This process includes passing the liquid through a treatment area to bring the liquid into contact with reflective walls submerged below an upper surface of the liquid, and exposing the upper surface of the liquid to light emitted from a UV light source such that UV light penetrates the liquid to strike the submerged reflective surfaces and to be reflected therefrom to emerge through the upper surface of the liquid. The process also involves determining the intensity of the UV light emitted from the light source, determining the intensity of UV light received by a UV light sensor trained to receive emergent light and determining whether the treatment has a predetermined effectiveness based on the intensity of the UV light emitted from the light source and the intensity of the UV light received by the sensor. Apparatuses for carrying out processes of the invention are also described.
Abstract:
This invention is capable of providing a water purifying apparatus with a comparatively simple configuration that can be used easily. First, a usage state is adopted by operating the knob of the faucet. In doing so, the detection means detects the flow of the water. As a result, the control unit supplies electricity to the ultraviolet light generator based on the detection signal form the detection means, and ultraviolet light is emitted. The emitted ultraviolet light then irradiates water within the passage. Water sterilization can then be carried out as a result of doing this. The ultraviolet light generator only generates light when the faucet is in use. It is therefore possible to utilize the ultraviolet light generator for long periods of time and savings are made with respect to power consumption. Further, a curving part is formed in the passage, and the ultraviolet light generator is arranged in the vicinity of the curving part. The time for which the water is irradiated with ultraviolet rays from the ultraviolet light generator is therefore made long, and the water purification efficiency is improved.
Abstract:
An apparatus for filtering and sterilizing water utilizing a turbidity and microorganism sensing system. The apparatus includes a UV light source that emits UV and visible light and light sensors. The light sensors include visible light detectors and light pipes that are impregnated with a fluorescent dye to covert UV light to visible light. The turbidity level is assessed by the detection of visible light passing through the water flow path while the microorganism levels are assessed by the detection of visible light that has been converted from UV light passing through the water flow path. The light sensors are in communication with a microprocessor which evaluates the intensity of the visible light and UV light. The microprocessor compares these intensities to a UV and visible light intensity standard to determine whether the water has been properly filtered and irradiated.
Abstract:
A lamp assembly configured to inductively receive power from a primary coil. The lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Abstract:
A lamp assembly configured to inductively receive power from a primary coil. The lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.