Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
A quantum dot-glass composite luminescent material is provided, the base of which is nanometer pore glass. The nanometer pore glass is doped with luminescent quantum dot. A manufacturing method for the luminescent material is also provided, which includes: step one, preparing an aqueous or organic solution of a single luminescent quantum dot, or a mixed aqueous or organic solution of two or more luminescent quantum dots; step two, immersing the nanometer pore glass in the solution of step one for at least ten minutes; step three, taking the immersed nanometer pore glass out of the solution and drying it in the air, wrapping and packaging the nanometer pore glass with resin, and obtaining the quantum dot-glass composite luminescent material after solidifying it. The composite luminescent material and manufacturing method thereof are suitable for industrialization and have a broad application in the fields of illumination, LED, display and so on.
Abstract:
A luminous nano-glass-ceramics used as white LED source and the preparing method of nano-glass-ceramics are provided. The glass is a kind of non-porous compact SiO2 glass in which luminous nano-microcrystalites are dispersed. The luminous nano-microcrystalite has the chemical formula of YxGd3-xAl5O12:Ce, wherein 0≦x≦3. The stability of the said glass is good and its irradiance is uniform. The preparing method comprises the following steps: dissolving the compound raw materials in the solvent to form mixed solution, dipping the nano-microporous SiO2 glass in the solution, taking it out and air drying, sintering at the temperature of 1100-1300° C. for 1-5 hours by stage heating, and obtaining the product. The method has a simple process, convenient operation and low cost.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
The present invention relates to a TiO2-containing silica glass containing TiO2 in an amount of from 5 to 10 mass % and at least one of B2O3, P2O5 and S in an amount of from 50 ppb by mass to 5 mass % in terms of the total content.
Abstract translation:本发明涉及含有5〜10质量%的TiO 2和B 2 O 3,P 2 O 5,S中的至少一种的含TiO 2的二氧化硅玻璃,其量为50ppb〜5质量% 总内容
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
An ytterbium-doped optical fiber of the present invention includes: a core which contains ytterbium, aluminum, and phosphorus and does not contain germanium; and a cladding which surrounds this core. The ytterbium concentration in the core in terms of ytterbium oxide is 0.09 to 0.68 mole percent. The molar ratio between the phosphorus concentration in the core in terms of diphosphorus pentoxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 30. The molar ratio between the aluminum concentration in the core in terms of aluminum oxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 32. The molar ratio between the above aluminum concentration in terms of aluminum oxide and the above phosphorus concentration in terms of diphosphorus pentoxide is 1 to 2.5.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
The present invention is directed at a family of glasses capable of absorbing UV radiation and filtering yellow light in the visible region of the spectrum, the family of glasses having a composition consisting essentially, in terms of weight percent on the oxide basis, of: 55-95.7% SiO2, 0-28% B2O3, 0.5-18% Al2O3, 0-4% SrO, 0-13% BaO, 0-13% CaO, 0-8% MgO, 0-7.5% Na2O, 0-9.5% K2O, 0-1.5% Li2O, 0-1.5% Sb2O3, 0.4-4.5% Nd2O3, and 0.1-1% CeO2. Glasses of the present invention are capable of employment as envelopes for tungsten-halogen lamps and other high temperature light sources, as well as sealed-beam incandescent headlights. Also, the glasses can be used as for other applications where high contrast and enhanced visible properties of transmitted or reflected visible light can be a benefit, such as opthalmic glass, computer screens with enhanced contrast properties, or glass hosts for lasers.
Abstract translation:本发明涉及能够吸收紫外辐射并过滤光谱可见光区域中的黄光的玻璃系列,具有以氧化物为基准的基本上以重量百分数计的组成的玻璃系列为:55 -95.7%SiO 2,0-28%B 2 O 3,0.5-18%Al 2 O 3,0-4%SrO,0-13%BaO,0-13%CaO,0-8%MgO,0-7.5%Na 2 O,0-9.5 %K2O,0-1.5%Li2O,0-1.5%Sb2O3,0.4-4.5%Nd2O3和0.1-1%CeO2。 本发明的玻璃能够用作钨卤素灯和其他高温光源以及密封束白炽灯的信封。 此外,眼镜可以用于其他应用,其中透射或反射的可见光的高对比度和增强的可见性可以是有益的,例如眼镜玻璃,具有增强的对比度性质的计算机屏幕或用于激光的玻璃主机。