Abstract:
An adjustable camshaft sprocket assembly for attachment to a camshaft. A camshaft sprocket is removably securable to a camshaft sprocket hub and moveable, independent of the camshaft sprocket hub when the camshaft sprocket assembly is mounted on the camshaft. An adjustment tool is used to adjust the camshaft sprocket comprising at least two extensions. The first extension is of a size to fit within one a corresponding opening in the camshaft hub. The second extension is of a size to pass though a different corresponding opening in the camshaft hub and fit within a corresponding opening in the camshaft sprocket. A handle extension is used for turning the adjustment tool about the second extension, which serves as a pivot.
Abstract:
There is provided a method for suspending roller tappets in an internal combustion engine without removal of the cylinder head and gasket. The rocker arm assembly is removed. Each push rod is then removed and replaced with tappet suspension tool to engage a corresponding roller tappet. A suspension tool guide bar is then installed to connect to the tappet suspension tools. The roller tappets are then simultaneously moved to a raised position away from the camshaft forming a clearance between the roller tappets and camshaft bearings. The roller tappets are then secured in the raised position by a securing block. The camshaft can then be removed from the engine block. Alternatively, the rear half of the front cover can be removed by first removing the idler gears, followed by removal of the camshaft, and last removing the rear half of the front cover from the engine case.
Abstract:
There is provided a rocker arm assembly for mounting on a carrier in an internal combustion engine that can be pre-assembled and installed on the rocker carrier decreasing manufacturing time and cost. The rocker arm assembly comprises a rocker arm, a fulcrum plate, a retaining clip, and a pivot ball that in cooperation with the retaining clip cooperatively connects the fulcrum plate and the rocker arm such that the pivot ball provides a pivot point for the rocker arm to pivot and thereby actuate at least one valve or valve bridge. The rocker arm further comprises a push rod cup, an aperture, pivot ball cup, and a pivot foot. The fulcrum plate can be a dual fulcrum plate, which holds two rocker arms, or an end fulcrum plate, which holds one rocker arm. The rocker arms can be either intake or exhaust rocker arms.
Abstract:
The invention concerns an electrically rotatable adjusting shaft (1) of a fully variable mechanical valve train of an internal combustion engine, said adjusting shaft comprising an adjusting cam. A rapid and exact rotation of the adjusting shaft (1) and the load regulation of the internal combustion engine depending thereon is achieved by the fact that an actuator (3) for rotating the adjusting shaft (1) comprises an adjusting lever (4) that is connected rotationally fast to the adjusting shaft (1), and the free end of the adjusting lever (4) can be loaded by a cam plate (6) that is driven by an electromotor (7).
Abstract:
The invention concerns an electrically rotatable shaft, and more particularly, an adjusting shaft (1) of a fully variable mechanical valve train of an internal combustion engine, said shaft comprising an adjusting cam (2). The rapid and exact rotation of the adjusting shaft (1) that is required for the fully variable valve train is achieved by the fact that the valve train comprises an actuator (3) that comprises an adjusting lever (4) connected rotationally fast to the adjusting shaft (1), and the free end of the adjusting lever is articulated through a forked lever (5) on a screw nut ((8) of a screw-and-nut drive (6) that is driven by an electromotor (7).
Abstract:
In a valve operating system in an internal combustion engine, a swinging support section provided at a base end of a rocker arm is swingably carried on a rocker shaft mounted in a cylinder head. A plurality of valve abutments are provided at a tip end of the rocker arm and capable of being individually put into abutment against upper ends of a plurality of engine valves, and a cam abutment is provided on the rocker arm in an intermediate portion between the swinging support section and each of the valve abutments to come into contact with a valve operating cam. The swinging support section comprises a thinner cylindrical portion surrounding the rocker shaft, and thicker cylindrical portions which are formed at a thickness larger than that of the thinner cylindrical portion into a cylindrical shape to surround the rocker shaft and which are integrally and continuously provided at axially opposite ends of the thinner cylindrical portion, respectively. Thus, it is possible to enhance the durability of the rocker arm, while avoiding an increase in weight of the rocker arm.
Abstract:
An improved variable valve lift mechanism that minimizes the number of components and also which permits a more greater latitude of valve lift adjustment including the possibility of no valve lift under some running conditions. This is done without interference with other components of the engine and thus permits a compact engine assembly.
Abstract:
A valve adjusting and injector preload tool is provided for an internal combustion engine having a valve opening member with a male threaded member operatively and adjustably contacting the valve. The tool includes a first member engagable with the threaded member for rotating the threaded member towards or away from the valve. There is a knob for rotating the first member in a first rotational direction so the male threaded member moves towards the valve and for rotating the first member in a second rotational direction so the male threaded member moves away from the valve. There is a clutch for stopping movement of the first member, as the male threaded member moves towards the valve, when the male threaded member operatively contacts the valve and takes up play between the valve opening member and the valve. There is a scale for measuring a predetermined amount of rotation of the threaded member, as the threaded member is rotated in the second rotational direction away from the valve, after the male threaded member operatively contacts the valve, and thereby setting a specified amount of play between the valve opening member and the valve. The method involves loosening any lock nut on the male threaded member. The male threaded member is rotated in a first rotational direction towards the valve until the male threaded member operatively contacts the valve. The male threaded member is then rotated in the opposite rotational direction for a specified angle of rotation related to the pitch of the male threaded member, such that a specified clearance is set between the threaded member and the valve.
Abstract:
A device for holding a rotary element stationaly relative to another rotary element adjacent thereto, comprising a first holding member engageable with one of said rotary elements; a second holding member engageable with one of said rotaly elements; a third holding member engageable with one of said rotary elements; a fourth holding member engageable with one of said rotary elements; and structure connecting said holding members together and providing for adjustment of at least three of said holding members relatively to one another, and for fixing said holding members in set positions relative to one another.
Abstract:
A method for improving efficiency and reducing emissions of an internal combustion engine. Variable displacement engine capabilities are achieved by disabling engine valves during load changes and constant load operations. Active cylinders may be operated at minimum BSFC by intermittently disabling other cylinders to provide the desired net torque. Disabling is begun by early closing of the intake valve to provide a vacuum at BDC which will result in no net gas flow across the piston rings, and minimum loss of compression energy in the disabled cylinder; this saving in engine friction losses is significant with multiple disablements.