Abstract:
A light detecting device includes a case, a reflector, and a light receiving element. The case is fixed to a windshield, and outside light passes through the windshield and an entrance hole defined in the case. A predetermined light travels from a predetermined area, and the reflector reflects the predetermined light of the outside light. The light receiving element is disposed in the case to have a distance from the windshield, and the distance is larger than a distance between the windshield and the entrance hole. The light receiving element receives the reflected predetermined light.
Abstract:
Provided herein are a wearable radiation detector and a method of controlling thereof, the detector including: the radiation collection unit operable to collect light and output a signal corresponding to the light collected; a memory; a display unit; a processor operable to receive the signal output by the radiation collection unit, to store a value in the memory corresponding to the signal output by the radiation collection unit, to output an output signal based at least on the signal corresponding to the light collected by the radiation collection unit and to control the display unit to display an indication corresponding to the output signal, wherein the determining includes continually calculating the maximum exposure level based on the light being received by the radiation collection unit.
Abstract:
A semiconductor integrated circuit device, having a plurality of processing elements accommodated on a single semiconductor chip, has a latch circuit and a selecting circuit. The latch circuit is provided at an output of each of the processing elements. The selecting circuit selects an input source from a group consisting of upper, lower, left, and right processing elements and a zero signal.
Abstract:
In a photodetector 1, a low-resistance Si substrate 3, an insulating layer 4, a high-resistance Si substrate 5, and an Si photodiode 20 construct a hermetically sealed package for an InGaAs photodiode 30 placed within a recess 6, while an electric passage part 8 of the low-resistance Si substrate 3 and a wiring film 15 achieve electric wiring for the Si photodiode 20 and InGaAs photodiode 30. While a p-type region 22 of the Si photodiode 20 is disposed in a part on the rear face 21b side of an Si substrate 21, a p-type region 32 of the InGaAs photodiode 30 is disposed in a part on the front face 31a side of an InGaAs substrate 31.
Abstract:
The invention relates to a radiation sensor device comprising a housing and a plurality of radiation sensor modules secured to the housing. Each radiation sensor module comprises a radiation sensor arranged to detect radiation incident on the radiation source module. Preferably, each radiation sensor module contains an entire so-called optical train to allow for calibration of the detector (e.g., photodiodes, photoresistors and the like) without disassembling all the components of the module.
Abstract:
An optical transceiver includes at least one light source and at least one detector mounted on the same surface of the same substrate. The detector is to receive light from other than a light source on the surface. At least one of the light source and the detector is mounted on the surface. An optics block having optical elements for each light source and detectors is attached via a vertical spacer to the substrate. Electrical interconnections for the light source and the detector are accessible from the same surface of the substrate with the optics block attached thereto. One of the light source and the detector may be monolithically integrated into the substrate.
Abstract:
An infrared sensor IC and an infrared sensor, which are extremely small and are not easily affected by electromagnetic noise and thermal fluctuation, and a manufacturing method thereof are provided. A compound semiconductor that has a small device resistance and a large electron mobility is used for a sensor (2), and then, the compound semiconductor sensor (2) and an integrated circuit (3), which processes an electrical signal output by the compound semiconductor sensor (2) and performs an operation, are arranged in a single package using hybrid formation. In this manner, an infrared sensor IC that can be operated at room temperature can be provided by a microminiature and simple package that is not conventionally produced.
Abstract:
A light amount measuring apparatus including a light amount measuring circuit and a power supply for supplying power to the light amount measuring circuit; wherein the light amount measuring circuit includes a light receiving device for receiving light and outputting an electric signal corresponding to light amount of the received light; a first switch for switching between electrical connection and disconnection between the light receiving device and the power supply; and a drive controller for controlling the first switch so that the first switch electrically connects the light receiving device to the power supply when the light receiving device is set to an activated state and electrically disconnects the light receiving device from the power supply when the light receiving device is set to a deactivated state.
Abstract:
A sensor component and a panel used for the production thereof is disclosed. The sensor component has, in addition to a sensor chip with a sensor region, a rear side and passive components. These are embedded jointly in a plastics composition, in such a way that their respective electrodes can be wired from an overall top side of a plastic plate.
Abstract:
A sensor module is provided for use in a passenger compartment of a motor vehicle that includes, but is not limited to a circuit board, at least one passenger compartment temperature sensor, and at least one solar irradiation detection sensor. The sensor module further includes, but is not limited to at least one ambient light detection sensor and at least one content theft deterrent device. A motor vehicle is also provided with such a sensor module.