Abstract:
Encoded spatio-spectral information processing is performed using a system having a radiation source, wavelength dispersion device and two-dimensional switching array, such as digital micro-mirror array (DMA). In one aspect, spectral components from a sample are dispersed in space and modulated separately by the switching array, each element of which may operate according to a predetermined encoding pattern. The encoded spectral components can then be detected and analyzed. In a different aspect, the switching array can be used to provide a controllable radiation source for illuminating a sample with radiation patterns that have predetermined characteristics and separately encoded components. Various applications are disclosed.
Abstract:
An infrared imaging microscope uses spatial encoding to divide an sample being examined into a plurality of pixel regions. The spatial encoding is provided by a digitally controlled mask, which is preferably a multiple mirror array, and which masks the imaging radiation directed from a radiation source to the sample. The signal reflected or transmitted from the sample is detected using a single-element detector. As the mask pattern provided by the mask changes, the output signal of the detector is monitored, and the spectroscopic composition of each of the pixel regions is resolved using a spatial decoding method, such as a Hadamard transform. The digital control of the mask allows fast, easily-implemented changes to the masking pattern, and provides a low processing load relative to imaging devices that use multiple-element detectors. The invention may be implemented in a stand-alone microscope, or as a probe in which most of the elements of the device are located in a main housing, while the mask is located in a remote probe housing connected to the main housing by fiber optic cables. This allows reflective-mode scanning of free-standing objects. In one alternative embodiment, a multiple-element detector is used with the digitally-controlled mask. In this embodiment, visible light is spatially encoded by the mask along with the imaging radiation. By masking the visible light in this manner, visual examination of the sample allows correlation between the area of the sample being examined and the output of the appropriate element of the detector.
Abstract:
A multi-sample spectrometer which finds particular application in such applications as on-line process control and monitoring, employs a Hadamard encoding scheme and comprises a source of radiation, a primary encoder to encode radiation from the source, a sample receiver to position the samples in the radiation path, a secondary encoder to modulate the intensity of radiation directed to individual samples, and a detector for receiving radiation from the samples.
Abstract:
In a spectrophotometer, a light source is provided in the form of a multiplicity of light emitting diodes which transmit light through an entrance slit to irradiate an oscillating grating. The light is dispersed by the grating toward an exit slit which transmits a narrow bandwidth of light to irradiate a sample. As the grating oscillates, the wavelength transmitted through the exit slit is scanned through a selected spectrum. The diodes in the array each emit light in a different wavelength band so that the diodes as a group emit light throughout the selected spectrum. As the grating oscillates, the diodes are energized and extinguished in sequence so that no more than two diodes will be energized at any given instant of time and the energized diode will be emitting light at the wavelength dispersed by the grating to the exit slit.
Abstract:
An improved Hadamard filter is disposed between the dispersive element and detector of a Hadamard transform spectrometer. The detector has a series of linear photo-active diode elements arranged in the focal plane of an array of optical lenses. The lenses may be a series of Fly's-Eye lenses with each series arranged to overlay the corresponding linear element of the detector, or may be a cylindrical lens overlying a corresponding detector element. Individual lenses of the Fly's-Eye lens or individual elements of the cylindrical lens are selectively masked according to the desired matrix so as to perform the Hadamard transform spectrometry.
Abstract:
A correlation spectrometer which utilizes Hadamard matrix spatial filters on the input and exit sides, the second filter being a composite filter whose elements can be chosen such that the spectrometer output is proportional to any arbitrary linear combination of source spectral intensities.
Abstract:
A multiplex spectrometer has its spectral line information encoded by transmitting the line through rows of apertures presented in sequence. The apertures occur in a pattern derived from a matrix of binary numbers. Decoding is achieved by adding or subtracting the output in a store containing addresses equal to the number of columns in the matrix.