Abstract:
A method is disclosed evaluating a silicon layer crystallized by irradiation with pulses form an excimer-laser. The crystallization produces periodic features on the crystalized layer dependent on the number of and energy density ED in the pulses to which the layer has been exposed. An area of the layer is illuminated with light. A microscope image of the illuminated area is made from light diffracted from the illuminated are by the periodic features. The microscope image includes corresponding periodic features. The ED is determined from a measure of the contrast of the periodic features in the microscope image.
Abstract:
A measuring apparatus (200) is provided for inspecting a seal (50) of an item (20). The measuring apparatus (200) includes a radiation source (510, 520) for providing radiation for illuminating the seal (50) of the item (20), a detector (530, 540) for receiving radiation from the item (20) for generating a corresponding detected signal, and a processing arrangement (160) for processing the detected signal to generate an output signal indicative of a state of the seal (50). The radiation source (510, 520) is arranged to focus the radiation into a plurality of focal points at the seal (50) of the item (20), wherein the focal points are mutually spatially spaced apart. Moreover, the detector (530, 540) is arranged to image one or more of the focal points and to be selectively sensitive to an intensity of radiation received from the one or more focal points to generate a detected signal. Furthermore, the measuring apparatus (200) includes a processing arrangement (160) for receiving the detected signal and for processing the detected signal to generate the output signal indicative of the state of the seal (50).
Abstract:
The objective is to develop a method for determining the quality of a liquid product containing polyphenols. The present invention is a method that is a significant improvement over existing methods that use conventional laboratory instrumentation to study the quality of liquid products. The method uses an adsorption cell with a small mirror as a reflecting surface and acts as a substrate for the adsorption of the liquid's polyphenols on its surface. The polyphenol's film thickness is measured by laser ellipsometry. Light from a monochromatic light source is reflected from the thin film of polyphenol, which changes the light's optical properties and are sensed using the principles of ellipsometry. The changes in state of polarized light are translated into graphical illustrations of measured and computed parameters that can be recognized and interpreted as distinctive properties of liquid product quality.
Abstract:
Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes.
Abstract:
To detect an infinitesimal defect, highly precisely measure the dimensions of the detect, a detect inspection device is configured to comprise: a irradiation unit which irradiate light in a linear region on a surface of a sample; a detection unit which detect light from the linear region; and a signal processing unit which processes a signal obtained by detecting light and detecting a defect. The detection unit includes: an optical assembly which diffuses the light from the sample in one direction and forms an image in a direction orthogonal to the one direction; and a detection assembly having an array sensor in which detection pixels are positioned two-dimensionally, which detects the light diffused in the one direction and imaged in the direction orthogonal to the one direction, adds output signals of each of the detection pixels aligned in the direction in which the light is diffused, and outputs same.
Abstract:
A glucose sensor comprising an optical energy source having an emitter with an emission pattern; a first polarizer intersecting the emission pattern; a second polarizer spaced a distance from the first polarizer and intersecting the emission pattern, the second polarizer rotated relative to the first polarizer by a first rotational amount Θ; a first optical detector intersecting the emission pattern; a second optical detector positioned proximal to the second polarizer, the first polarizer and the second polarizer being positioned between the optical energy source and the second optical detector, the second optical detector intersecting the emission pattern; a compensating circuit coupled to the second optical detector; and a subtractor circuit coupled to the compensating circuit and the first optical detector.
Abstract:
A treatment pattern (such as a focused spot, an image, or an interferogram) projected on a treatment target may lose precision if the treatment beam must pass through a birefringent layer before reaching the target. In the general case, the birefringent layer splits the treatment beam into ordinary and extraordinary components, which propagate in different directions and form two patterns, displaced from each other, at the target layer. The degree of birefringence and the orientation of the optic axis, which influence the amount of displacement, often vary between workpieces or between loci on the same workpiece. This invention measures the orientation of the optic axis and uses the data to adjust the treatment beam incidence direction, the treatment beam polarization, or both to superpose the ordinary and extraordinary components into a single treatment pattern at the target, preventing the birefringent layer from causing the pattern to be blurred or doubled.
Abstract:
A non-invasive measurement of biological tissue reveals information about the function of that tissue. Polarized light is directed onto the tissue, stimulating the emission of fluorescence, due to one or more endogenous fluorophors in the tissue. Fluorescence anisotropy is then calculated. Such measurements of fluorescence anisotropy are then used to assess the functional status of the tissue, and to identify the existence and severity of disease states. Such assessment can be made by comparing a fluorescence anisotropy profile with a known profile of a control.
Abstract:
A measurement apparatus includes a light source assembly configured to emit light to a sample, a measuring device configured to measure reflected light, and a stage on which the sample is provided, where the light source assembly includes a first plate, a plurality of light sources connected to the first plate and a blocking panel comprising a hole, and one of the plurality of light sources is aligned with the hole in a first direction.
Abstract:
A light intensity measurement system includes a light source unit configured to emit coherent light to aqueous humor of a subject eye, a polarization control unit that is arranged between the light source unit and the subject eye, and configured to control a polarization state of the coherent light, and a measurement unit configured to measure light intensity of scattered light in the aqueous humor of the coherent light. With this configuration, a light intensity measurement system that can non-invasively measure the concentration of substances contained in aqueous humor of a subject eye is provided.