Abstract:
A charged particle energy analyser has a magnetic lens such as a snorkel-type lens and a source for directing ionising radiation onto a specimen causing charged particles to be emitted from its surface. The specimen is immersed in the magnetic imaging field of the magnetic lens so that particles having energies in a predetermined energy range are brought to a focus, the energies of the focussed particles being analysed by an energy analyser. An electrode arrangement is provided for enabling the magnetic imaging field of the magnetic lens to utilise unfocussed particles to cause charge neutralisation of the specimen. Alternatively, charged particles from a source are subjected to an electric field which is transverse to the optical axis of the magnetic lens and are guided onto the specimen by the magnetic imaging field of the magnetic lens.
Abstract:
There is disclosed a method of irradiating low-energy electrons that has the steps of irradiating a primary electron beam from a primary electron beam irradiation portion onto a secondary electron emission portion to emit a secondary electron beam, accelerating the emitted secondary electron beam, removing high-energy components from that accelerated secondary beam, and decelerating the secondary electron beam without the high-energy components into a focus. And there is also disclosed an apparatus for irradiating low-energy electron that has a primary electron beam irradiating section, a secondary electron emitting section which receives the primary electron beam and emits a secondary electron beam, a secondary electron beam accelerating section, energy analyzing section which removes high-energy components from the accelerated secondary electron beam, to obtain low-energy secondary electrons, and deceleration section for decelerating the low-energy secondary electrons into a focus.
Abstract:
Method and apparatus for the control of the rate of emission of electrons added to an ion implantation beam to neutralize charging effects on semiconductor wafers being processed. A net charging current, or equivalent voltage, is sensed continuously, but is sampled only when a selected wafer, or multiple selected wafers, are positioned to receive the entire cross section of the ion beam. The sampled charging current is used to control the addition of charge-neutralizing electrons to the ion beam, thereby eliminating problems that ensue from the use of an averaged charging current that is sensed without regard to the relative beam position or the number of wafers being processed.
Abstract:
An ion implanter has a sample table on which a sample is placed, and means for injecting ions into the sample by applying an ion beam to the sample on the sample table. The ion implanter has magnetic field applying means for generating radial magnetic fields on the surface of the sample from near the center of the sample to outside of the outer periphery of the sample. The secondary electrons generated when the ion beam irradiates the sample table or the sample, including the secondary electrons generated from the sample table near the outer periphery of the sample, are trapped in the magnetic fields and transferred to the central portion of the sample. The secondary electrons are attracted by the electrostatic charge of the ions injected to the surface of the sample and recombine with the ions. Consequently, the electrostatic charge on the surface of the sample is decreased, preventing generation of device defects caused by electrostatic discharge damage.
Abstract:
An apparatus is described for allowing an ion beam and an electron beam to travel toward a predetermined region of a substrate surface during the sputter etching and imaging of insulating and other targets while preventing deflection of the electron beam by sources of stray electrostatic fields on the substrate surface. A metal shield is provided having a funnel-shaped portion leading to an orifice. The incident finely focused ion beam, together with the electron beam, which is used to neutralize the charge created by the incident ion beam, pass to the target through the orifice. The shield also physically supports a gas injection needle that injects a gas through the orifice toward the predetermined region.
Abstract:
A particle beam irradiating apparatus including a particle beam irradiating device for irradiating a charged particle beam such as ions or electrons to a specimen. A charged particle source is included for irradiating an electron beam to the specimen which is positively charged or an ion beam to the specimen which is negatively charged so as to neutralize the specimen, and a voltage supply is include for applying a bias voltage difference not more than 10 V between the charged particle source and the specimen. As the specimen is not charged with a high voltage, the specimen does not break down.The particle beam irradiating apparatus is effectively used in an electron microscope, an electron beam lithography system, an ion implanter, an ion microprobe analyzer, a secondary ion mass spectrometer.
Abstract:
In an ion beam irradiating apparatus, a specified ion beam is first deflected in a deflection direction perpendicular to an ion beam orbit by an ion beam deflector. The deflected ion beam is neutralized by a thermoelectron beam emitted from a filament of an ion neutralizer. An electrode is employed to control the supply of the thermoelectron beam to the deflected ion beam. Both the filament and control electrode elongated along the deflection direction surround the deflected ion beam traveled along the ion beam orbit.
Abstract:
Disclosed is a method and apparatus for thin film deposition comprising bombarding a target obliquely in a vacuum chamber with a linear ion gun. The linear ion gun generates an ion beam which impacts the target over an area having a width substantially greater than a height. Target material in the impacted area is sputtered. The sputtered target material is deposited onto a surface by translating the surface at a controlled rate through the sputtered material.
Abstract:
The invention relates to a structural member made from a metallic materialaving an upper surface exposed to dangers of electric charge accumulations during operation in an apparatus such as a high vacuum apparatus operating with a charge carrying beam wherein the upper surface is formed with a conductive or semiconductive compound of the metallic material which is also present in the body of the structural member and is in electrical contact with the body of the structural member, thereby preventing undesirable charge accumulation on the surface.
Abstract:
A process and apparatus for controllably eroding the surface of hard materials such as fused quartz, glass, metals and ceramics by the bombardment of the positive ions. Focused argon ions accelerated by potentials of up to 120,000 volts and with a constant beam current are controlled in direction to cause surface erosion of a workpiece to accuracies of up to one-one hundredth of a wavelength of green light. The workpiece is moved at a controlled rate in combination with the control of the beam direction to obtain a controlled erosion pattern over the surface of the workpiece. In another embodiment, an intensity modulated beam current is used. An electron beam is directed at the workpiece in a pattern which surrounds the ion beam to prevent the building up of a positive charge on the work surface. The progress of the erosion is observed and measured by an interferometer system. The movement of the ion beam and workpiece can follow a programmed automatic sequence.