Abstract:
A field emission lamp generally includes a bulb having an open end, a lamp head disposed at the open end of the bulb, an anode, and a cathode. The anode includes an anode conductive layer formed on an inner surface of the bulb, a fluorescent layer deposited on the anode conductive layer, and an anode electrode electrically connected with the anode conductive layer and the lamp head. The cathode includes an electron emission element and a cathode electrode electrically connected with the electron emission element and the lamp head. The electron emission element has an electron emission layer. The electron emission layer includes getter powders therein to exhaust unwanted gas in the field emission lamp, thereby ensuring the field emission lamp with a high degree of vacuum during operation thereof. A method for making such field emission lamp is also provided.
Abstract:
A field emission backlight unit for a liquid crystal display (LCD) includes: a lower substrate; first electrodes and second electrodes alternately formed in parallel lines on the lower substrate; emitters disposed on at least the first electrodes; an upper substrate spaced apart from the lower substrate by a predetermined distance such that the upper and lower substrates face each other; a third electrode formed on a bottom surface of the upper substrate; and a fluorescent layer formed on the third electrode. Since the backlight unit has a triode-type field emission structure, field emission is very stable. Since the first electrodes and the second electrodes are formed in the same plane, brightness uniformity is improved and manufacturing processes are simplified. If the emitters are disposed on both the first electrodes and the second electrodes, and a cathode voltage and a gate voltage are alternately applied to the first electrodes and second electrodes, the lifespan and brightness of the emitters can be improved. The above advantages are also achieved as a result of the method of driving the backlight unit and the method of manufacturing the lower panel thereof.
Abstract:
A method of fabricating a field emission array type light emitting unit that includes a rear substrate including a plurality of cathodes and a plurality of carbon nanotube emitters on a front side, a front substrate including a plurality of anodes and a phosphor layer on a rear side, wherein the rear substrate and the front substrate are arranged at a distance apart from each other and a plurality of spacers are arranged between the rear substrate and the front substrate, the plurality of spacers being adapted to maintain constant the distance, the method includes producing a diffusion pattern by wet etching a front side of the front substrate.
Abstract:
A field emission illumination device includes a sealed tubular body, an anode layer, a fluorescence layer and an electron emitting cathode electrode. The sealed tubular body has a light-permeable portion and the anode is formed on an inner surface of the light-permeable portion of the tubular body. The fluorescence layer is formed on the anode layer. The electron emitting cathode is positioned in the tubular body and includes at least one carbon nanotube yarn. In the illuminating process the energy in the field emission illumination device only undergoes transformation from electric energy to luminous energy, so the efficiency of the energy transformation is increased.
Abstract:
A field emission lamp includes a transparent glass tube, a cathode, and an anode. The anode and cathode are both disposed in the transparent glass tube. The cathode includes an electron emission layer. The anode includes a carbon nanotube transparent conductive film formed on an inner wall of the transparent glass tube and a fluorescent layer formed on the carbon nanotube transparent conductive film. A method for fabricating the above-described field emission lamp, includes the steps of: (a) providing a transparent glass tube including at least one conductive wire, a carbon nanotube transparent conductive film and a fluorescent layer formed on the inner wall thereof; and (b) providing an anode electrode, a cathode electrode, a cathode emitter sealed by feedthroughs in the glass tube to achieve the field emission lamp.
Abstract:
A light emitting device and a display device using the same. The light emitting device includes: a substrate provided with recesses formed in a stripe pattern; first electrodes disposed inside the recesses in a stripe pattern aligned parallel to the recesses; electron emission regions disposed on the first electrodes; second electrodes disposed in a stripe pattern aligned in a direction crossing the first electrodes and closely fixed to the substrate; and an adhesive member for fixing the second electrodes to the substrate. The second electrodes include mesh portions spaced apart from tops of the electron emission regions in crossing of the first electrodes and the second electrodes, supports surrounding the mesh portions and connected with the substrate, and combining grooves formed at edges of the supports facing the substrate. The adhesive members are disposed in the combining grooves of the second electrodes to connect the second electrodes with the substrate.
Abstract:
Provided are a composition for preparing an electron emission source, including a nano-sized inorganic material and a vehicle, a method for preparing an electron emission source using the composition, an electron emission source including a nano-sized inorganic material and a small amount of a residual carbon, and further, an electron emission device including the electron emission source.
Abstract:
An electron emission device including a first substrate, a second substrate, a gas, a sealant, and a phosphor layer is provided. The first substrate has a cathode thereon, and the cathode has a patterned profile. The second substrate is opposite to the first substrate and has an anode thereon. The sealant is disposed at edges of the first substrate and the second substrate to assemble the first and second substrates. The gas is disposed between the cathode and the anode and configured to induce a plurality of electrons from the cathode, wherein the pressure of the gas is between 10 torr and 10−3 torr. The phosphor layer is disposed on the moving path of the electrons to react with the electrons so as to emit light.
Abstract:
A light emission device and a display device having the light emission device are provided. The light emission device includes first and second substrates that are arranged to face each other, an electron emission unit that is located on a first surface of the first substrate facing the second substrate and has electron emission regions and driving electrodes, a light emission unit that is located on a surface of the second substrate and has an anode electrode and one or more phosphor layers, and a surface heat generation unit that is located on a second surface (or outer surface) of the first substrate facing away from the second substrate to control a temperature of the first substrate using a resistive layer having a positive temperature coefficient (PTC) property.
Abstract:
The present invention relates to an electrode for a source of field emitting electrons and a lighting panel and a lighting apparatus thereof. A plurality of conductive emitters made from a combination of an electrical emitting source material and an electrical conductive material is formed on a cathode plate. Therefore, the conductive emitter can be a cathode, a gate and a field emitting electric source as well to simplify the structure and the process, and improve the brightness and uniformity thereof.