Abstract:
A field emission device for emitting white light is provided. The device includes a cathode plate assembly (1), an anode plate assembly (2) which is opposite to and spaced from the cathode plate assembly (1), and a supporting body (3) for tight coupling the cathode plate assembly (1) with the anode plate assembly (2). The anode plate assembly (2) includes a transparent substrate (203) which can emit yellow light when excited by blue light. An anode (202) and a blue cathode ray luminescent material layer (201) are provided on the surface of the transparent substrate (203). The blue cathode ray luminescent material layer (201) contains blue cathode ray luminescent material.
Abstract:
A field emission panel includes a cathode electrode which is formed on a substrate, a multilayered carbon nano tube which is formed on the cathode electrode, and a gate electrode which is positioned at a distance from the multilayered carbon nano tube. The multilayered carbon nano tube has a minimum thermal decomposition temperature higher than a temperature of a heating process which is performed when the field emission panel is manufactured, and has three peaks of Raman scattered light in a Raman intensity distribution characteristic.
Abstract:
A light emitting element (10) is provided, which includes luminescent glass (13), a metal layer (14) formed on the surface of the luminescent glass (13), wherein periodic micro and nano structure is provided on the metal layer (14), and the chemical constituent of the luminescent glass (13) is rare-earth-ion doped silicate. Further provided are manufacturing and luminescence methods of the light emitting element. The luminescent glass (13) in the present invention includes a metal layer (14) with periodic micro and nano structure, which can enhance the luminous efficiency and luminous homogeneity and stability of the luminescent glass, and can be used on superluminescent and high-speed operating light emitting devices.
Abstract:
A device for lighting a room is described. The device has an envelope with a transparent face, the face having an interior surface coated with a cathodoluminescent screen and a thin, reflective, conductive, anode layer. There is a broad-beam electron gun mounted directly to feedthroughs in a base of the envelope with a heated, button-on-hairpin, cathode for emitting electrons in a broad beam towards the anode, and a power supply mounted on the feedthroughs at the base of the envelope that drives the cathode to a multi-kilovolt negative voltage. A two-prong snubber serves as an anode contact to permit the power supply to drive the anode to a voltage near ground. A method of manufacture of the anode uses a single step deposition and lacquering process followed by a metallization using a conical-spiral tungsten filament coated with aluminum by a thermal spray coating process.
Abstract:
In one embodiment of the present invention, an electron/photon source is disclosed based on field emission, cathodoluminescent and photo-enhanced field emission, including an evacuated chamber inside a housing, further including an anode and a cathode arranged inside the evacuated chamber. Furthermore, the cathode is arranged to emit electrons when a voltage is applied between the anode and cathode, the anode being arranged to emit light at a first wavelength range when receiving electrons emitted from the cathode, and a wavelength range converting material arranged to receive the emitted light of the first wavelength range and emit light at a second wavelength range. In a novel way, an embodiment of the present invention makes it possible to, in two steps, convert the electrons emitted from the cathode to visible light. The invention has shown to be advantageous, and makes it possible to select new emission materials, manufactured at a fraction of the cost associated with the earlier used materials where the electron to visible light conversion was done in one step.
Abstract:
The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dPr2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
Abstract:
A field emission lamp generally includes a bulb having an open end, a lamp head disposed at the open end of the bulb, an anode, and a cathode. The anode includes an anode conductive layer formed on an inner surface of the bulb, a fluorescent layer deposited on the anode conductive layer, and an anode electrode electrically connected with the anode conductive layer and the lamp head. The cathode includes an electron emission element and a cathode electrode electrically connected with the electron emission element and the lamp head. The electron emission element has an electron emission layer. The electron emission layer includes getter powders therein to exhaust unwanted gas in the field emission lamp, thereby ensuring the field emission lamp with a high degree of vacuum during operation thereof. A method for making such field emission lamp is also provided.
Abstract:
A field emission illumination device includes a sealed tubular body, an anode layer, a fluorescence layer and an electron emitting cathode electrode. The sealed tubular body has a light-permeable portion and the anode is formed on an inner surface of the light-permeable portion of the tubular body. The fluorescence layer is formed on the anode layer. The electron emitting cathode is positioned in the tubular body and includes at least one carbon nanotube yarn. In the illuminating process the energy in the field emission illumination device only undergoes transformation from electric energy to luminous energy, so the efficiency of the energy transformation is increased.
Abstract:
An electron emission device which can uniformly emit electrons and can be simply manufactured at a reduced cost, and a display apparatus having improved uniform brightness of pixels by using the electron emission device. In addition, a simple method of manufacturing the electron emission device. The electron emission device includes: a first substrate; a cathode electrode and an electron emission unit disposed on the first substrate; a gate electrode electrically insulated from the cathode electrode; an insulating layer disposed between the cathode electrode and the gate electrode to insulate the cathode electrode from the gate electrode; and an electron emission source including carbon nanotubes (CNTs) that contact the cathode electrode, wherein distances between the gate electrode and the tips of the CNTs are uniform.
Abstract:
An electron emission device includes first and second substrates facing each other while a vacuum space is interposed therebetween. An electron emission array is formed on the first substrate to emit electrons toward the second substrate, and phosphor layers are formed on the second substrate. An anode electrode is formed on a surface of the phosphor layers, and receives the voltage required for accelerating electron beams from the electron emission array. A grid electrode is disposed between the first and second substrates and is closer to the second substrate than to the first substrate. The grid electrode has electron beam passage holes, and receives a voltage lower than a location reference voltage.