Abstract:
An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.
Abstract:
An assembly includes an integrated circuit, a film layer disposed over the integrated circuit and having a thickness of at least 50 microns, and a thermal neutron absorber layer comprising at least 0.5% thermal neutron absorber. The thermal neutron absorber layer can be a glass layer or can include a molding compound.
Abstract:
A circuit board includes an insulative substrate having a first surface on which an electronic component is mounted, a second surface opposite to the first surface, and a through-hole open in the first surface and the second surface, a first conductive layer formed on the first surface so as to reach the through-hole, to which the electronic component is electrically connected, a second conductive layer formed on the second surface so as to reach the through-hole and electrically connected to the first conductive layer through the through-hole, a third conductive layer formed over the second surface so as to reach the through-hole, covering at least part of the second conductive layer, and filling at least part of the through-hole, a first protective glass layer covering the second conductive layer and the third conductive layer, and an adhesive layer formed on the first protective glass layer.
Abstract:
In a first aspect of the present invention, a lighting device including a metal plate, an electrical insulation layer that is smaller in size than an outline of the metal plate and arranged on an upper surface of the metal plate, a light-emitting element mounted on the electrical insulation layer, and a first connecting electrode and a second connecting electrode electrically connected to the light-emitting element and arranged on the electrical insulation layer.
Abstract:
A power management module, provides an inductor including one or more electrical conductors disposed around a ferromagnetic ceramic element including one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.50 mol % throughout the ceramic element.
Abstract:
An insulating white glass paste suitable for forming an insulating reflective layer to be provided on a lighting device substrate, comprising an organic medium and inorganic components comprising glass frit and zirconia powder as a light-reflecting filler.
Abstract:
An element-mounting substrate includes a ceramic substrate, an electrode layer formed on the substrate and a ceramic coating layer which is formed on a part of the electrode layer and has a thickness of 5 to 50 μm. A process for producing the element-mounting substrate includes the steps of forming an electrode precursor layer in the shape of a pattern of an electrode layer on a ceramic plate or a green sheet of a large diameter, forming a ceramic coating precursor layer on a part of the electrode precursor layer and then firing the resulting precursor. In this process, it is preferable to form the ceramic coating layer so as to cover the electrode layer on a predetermined cutting line of the firing product. According to the element-mounting substrate in which a part of the electrode layer is covered with a ceramic, a failure in mounting an element attributable to the thickness of the ceramic coating layer can be prevented when the element is mounted. In addition, peeling or cracking of the electrode layer caused by impact during dicing can be prevented.
Abstract:
A method of making dense dielectrics layers via chemical solution deposition by adding inorganic glass fluxed material to high dielectric constant compositions, depositing the resultant mixture onto a substrate and annealing the substrate at temperatures between the softening point of the inorganic glass flux and the melting point of the substrate. A method of making a capacitor comprising a dense dielectric layer.
Abstract:
A method of manufacturing a semiconductor device includes the steps of bonding a semiconductor chip to a first side of a circuit board, bonding a metal base for dissipating heat produced by the semiconductor chip to a second side of the circuit board, and forming a dam on the metal base by a dam material so as to restrict flow of a solder used in bonding a plurality of the circuit boards to the metal base.
Abstract:
A multilayer ceramic substrate includes an inner layer portion and surface portions that sandwich the inner layer portion in the stacking direction and have an increased transverse strength because of the surface layer portion having a thermal expansion coefficient less than that of the inner layer portion. At least one of the surface portions covers peripheries of main-surface conductive films arranged on a main surface of an inner portion so as to leave central portions of the main-surface conductive films exposed, so that the main-surface conductive films function as via conductors, thereby eliminating the need to provide a via conductor in the surface portions.