Abstract:
The method is a method for positioning a three-layered rectangular frame-like anisotropic conductive connector in order to inspect the electrical properties of an object for inspection. The positioning is carried out in the following manner. The three-layered anisotropic conductive sheet is composed of a first anisotropic conductive sheet, a center substrate and a second anisotropic conductive sheet. Markings and through-holes are formed on the center substrate, and semi-transparent protrusions and through-holes are formed on each of the first anisotropic conductive sheet and the second anisotropic conductive sheet. The markings are identified through the semi-transparent protrusions by detecting means disposed on the side of the first anisotropic conductive sheet and the second anisotropic conductive sheet and thereby the positioning of the semi-transparent protrusions to the markings is carried out, whereby performing the positioning of the first anisotropic conductive sheet, the center substrate and the second anisotropic conductive sheet.
Abstract:
A producing method of a suspension board with circuit includes simultaneously forming a conductive pattern formed on an insulating layer formed on a metal supporting board and having a terminal portion for connecting to an electronic component, and a mark formed on the metal supporting board, or on the insulating layer and having an opening for forming a reference hole for mounting the electronic component, and forming the reference hole by etching the metal supporting board disposed in the opening of the mark, or the insulating layer and the metal supporting board each disposed in the opening of the mark.
Abstract:
An exemplary method for manufacturing flexible printed circuit board is provided. A metal foil is supplied from a first feeding roller. The metal foil has a first surface and a second surface on two opposite sides of the metal foil. A first coverlay having a number of first openings defined therein is supplied from a second feeding roller and laminated on the first surface of the metal foil. Electrical traces are formed with the metal foil. A second coverlay having a number of second openings defined therein is supplied from a third feeding roller and laminated on the second surface of the metal foil. Each of the second openings registers with the respective first opening so that the electrical traces are exposed from the corresponding first and second openings. The method can improve quality and efficiency of manufacturing flexible printed circuit boards in a hollowed out form.
Abstract:
According to one embodiment, there is provided a printed wiring board includes a mounting surface for mounting an electronic component, a first component mounted on the mounting surface, an index portion provided on the mounting surface for defining a mounting position Pa of a second component being mounted on the mounting surface in a process after the first component is mounted, the index portion including two direction positions on the mounting surface, and the second component mounted on the mounting surface based on the index portion.
Abstract:
A printed circuit board, a method of manufacturing the printed circuit board, and an apparatus for perforating via holes. By use of a method of manufacturing a printed circuit board that includes forming a first circuit pattern, which includes a reference mark and a via land, on one surface of an insulation substrate; stacking a metal layer on the insulation layer; opening a first window in the metal layer in correspondence with the reference mark; and forming a via which electrically connects the via land with the metal layer, by irradiating light towards the other surface of the insulation substrate and identifying the reference mark through the first window, the occurrence of short-circuiting is prevented in forming vias for electrical interconnection between circuit patterns in a printed circuit board, and as the defect rate caused by eccentricity between insulation layers may be reduced, aspects of the invention may contribute to reducing costs.
Abstract:
An apparatus and method performing a sequence of processing steps on a load supported by a processing plate. The load can include a single sheet on which a plurality of applications are performed or can include a plurality of panels on which respective applications are performed. For each application, at least one coarse target and at least one panel target are used to adjust the programmed coordinates for that application. After the first application of the load is processed using the coarse and panel targets, coarse and panel targets are located for the second application. Using the alignment provided by these targets, the second application is processed. Each subsequent application is similarly aligned and processed.
Abstract:
Positioning marks are formed on both sides of each printing block on a tape carrier for TAB. A long-sized circuit board is transported by a roll-to-roll system in screen printing. When an optical sensor detects a positioning mark, transportation of the long-sized circuit board is stopped. Thereafter, the screen printing of a solder resist is performed to the printing block of the long-sized circuit board by a screen printing device.
Abstract:
There is provided a laser machining apparatus capable of improving workpiece machining precision. The laser machining apparatus having a movable table for supporting a workpiece to be machined and a camera for detecting position of the workpiece by reflection light from an alignment mark formed through the workpiece further includes a jig plate provided between the table and the workpiece and having light-receiving holes that overlap with the alignment mark and that are larger than the alignment mark (through hole).
Abstract:
A method of establishing at least one marking element on a substrate (1). By means of design data of the substrate (1) at least a fictitious marking element (5) on the substrate (1) is determined. The fictitious marking element (5) should then be unique for a predefined area of the substrate (1). The fictitious marking element is obtained by selecting at least two transitions (6, 7, 17, 18) of at least one element on the substrate while the transitions (6, 7, 17, 18) enclose an angle to each other.
Abstract:
A method of applying a registered pattern to a continuous web of material involves determining a position of a next pattern such that the next pattern is in registration with a previous pattern, adjusting the position to maintain a transverse location relative to the web, and adjusting a rotation of the pattern so that the pattern is substantially aligned with a longitudinal axis of the web. Registration features of the web and registration features of the next pattern are used to determine longitudinal, transverse, and rotational errors between the registered position of the next pattern and the path of the web. The registered position of the next pattern is adjusted along a transverse axis of the web according to a transverse error to maintain the transverse location. A rotation of the registered position is adjusted according to an angle that is determined using the transverse error and a distance from a registration feature to a center of the pattern along a longitudinal axis of the pattern.