Abstract:
To provide a compact module that is capable of achieving a low profile and that has excellent high-frequency characteristics, a module includes a parent board; first and second child boards arranged so as to face the parent board; multiple electronic components that include first electrodes and second electrodes electrically connected to the first electrodes, respectively, on both opposing faces, the first electrodes being connected to the first child board, the second electrodes being connected to the parent board; and multiple electronic components that include first electrodes and second electrodes electrically connected to the first electrodes, respectively, on both opposing faces, the first electrodes being connected to the second child board, the second electrodes being connected to the parent board.
Abstract:
An error is prevented from being generated at a mounting position of an electronic component on a wiring substrate. A first semiconductor chip has a main surface and a rear surface. The rear surface is an opposite surface of the main surface. The rear surface of the first semiconductor chip is an opposite surface of the main surface thereof. A wiring substrate is rectangular, and has a main surface and a rear surface. The first semiconductor chip is mounted on the main surface of the wiring substrate. A lid covers the main surface of the wiring substrate, and the first semiconductor chip. An electronic component is mounted on the rear surface of the wiring substrate. The main surface of the wiring substrate has uncovered regions that are not covered with the lid at at least two corners facing each other.
Abstract:
A multilayer ceramic capacitor may include: three external electrodes disposed on a mounting surface of a ceramic body to be spaced apart from one another. When a thickness of an active layer including a plurality of first and second internal electrodes disposed therein is defined as AT, and a gap between a first or second lead part of the first internal electrode and a third lead part of the second internal electrode is defined as LG, the following Equation may be satisfied: 0.00044≦LG*log[1/AT]≦0.00150.
Abstract:
There is provided a multilayer ceramic capacitor, including a ceramic body including a plurality of dielectric layers stacked in a width direction and having upper and lower surface, first and second side surfaces, and first and second end surfaces, a first internal electrode formed on the dielectric layer and including a first lead part exposed to the upper and lower surfaces, a second internal electrode facing the first internal electrode, having at least one dielectric layer therebetween and having a second lead part exposed to the upper and lower surfaces, a first external electrode, a second external electrode, a first dummy pattern, and a second dummy pattern, wherein when a length of the ceramic body is B, a distance of the first lead part is C1, and a distance of the first dummy pattern is C3, 0.1≦(C1+C3)/B≦0.6 is satisfied.
Abstract:
A packaging substrate includes: a core board with at least a cavity; a dielectric layer unit having upper and lower surfaces and encapsulating the core board and filling the cavity; a plurality of positioning pads embedded in the lower surface of the dielectric layer unit; at least a passive component having upper and lower surfaces with electrode pads disposed thereon and embedded in the dielectric layer unit so as to be received in the cavity of the core board at a position corresponding to the positioning pads; first and second wiring layers disposed on the upper and lower surfaces of the dielectric layer unit and electrically connected to the electrode pads of the upper and lower surfaces of the passive component through conductive vias, respectively. By embedding the passive component in the core board and the dielectric layer unit, the invention effectively reduces the height of the overall structure.
Abstract:
A method for forming voids corresponding to pads of SMT components is provided. The method comprises following steps: One or more condition parameters are inputted into a searching unit. The searching unit searches all of the pads with reference to the condition parameters to obtain a pre-selected group of pads. A judgment unit is provided to determine whether each pad of the pre-selected group of pads meets a pre-determined processing requirement to generate a to-be-processed group of pads. An execution unit executes a void formation step with reference to corner coordinates of each of the to-be-processed group of pads, so as to form at least a void at the portion of a contact surface corresponding to a corner of the pad. In an embodiment, four voids which are related to respective corners of each pad of the to-be-processed group are formed at the contact surface accordingly.
Abstract:
An electronic component includes a main body, first and second external electrodes, and a water-repellent film. The first and second external electrodes are provided on a portion of a surface of the main body. The water-repellent film is provided on another portion of the surface of the main body and on a surface of the first external electrode. The water-repellent film contains a non-cross-linked silicone resin. An angle of contact of water of about 25° C. with the water-repellent film is not less than about 100° and not greater than about 160°.
Abstract:
A multilayer wiring board with a built-in electronic component includes a substrate, a conductor layer formed on surface of the substrate, one or more electronic components positioned in a cavity formed through the substrate, an insulating layer formed on the substrate such that the insulating layer is formed on the component in the cavity, and a wiring layer formed on the insulating layer. The conductor layer has an opening formed such that the cavity is formed in the opening of the conductor layer and that the conductor layer has a first side in the opening and a second side in the opening on the opposite side across the cavity, and the cavity is formed in the opening of the conductor layer such that width between the cavity and the first side of the conductor layer is greater than width between the cavity and the second side of the conductor layer.
Abstract:
A multilayer wiring board with built-in electronic components includes a substrate including an insulating material and having multiple opening portions, a first conductor layer formed on a surface of the substrate and having an opening portion such that the substrate has the opening portions inside the opening portion of the first conductor layer, multiple electronic components positioned in the opening portions of the substrate, and an insulating layer formed on the substrate such that the insulating layer is formed on the electronic components and on the first conductor layer. The opening portions are formed in the substrate such that the opening portions include two opening portions and that the substrate has a partition wall formed between the two opening portions.
Abstract:
Surface mounted ceramic capacitors (14) on printed circuit boards (10′) are subject to vibrations (18) caused by the piezo effect. Other electronic components are subject to magnetostriction and likewise generate vibrations. In prior art, the vibrations can propagate (20) on a printed circuit board (10). To suppress the propagation of the vibrations caused by the electronic component (14), the invention provides at least one slot (22) in the printed circuit board (10′). The slot (22) extends, for example, parallel to a side wall of the electronic component (14).